Shri Agrasen Kanya P.G. College (An Autonomous Institution)

Affiliated with Mahatma Gandhi Kashi Vidyapeeth

Two-year M.sc. Degree course in CHEMISTRY

CHOICE BASED CREDIT SYSTEM SYLLABUS

Master of Science (M.Sc.) in Chemistry is a post-graduation course of Shri Agrasen Kanya P.G. College (An autonomous Institution), Varanasi affiliated with Mahatma Gandhi Kashi Vidyapeeth Varanasi.

The aim of this programme is to impart in depth knowledge and skill to meet the current needs of industry, educational and R&D institutions. The revised curriculum is based on Choice based credit system and is developed with a viewpoint to keep pace with quality and quantity of knowledge of modern chemical science. In formulating these courses care has been taken to keep in mind the regional and national priorities maintain national and international educational standards.

The term credit is used to describe the quantum of syllabus for various programs in terms and hours of study. It indicates differential weightage given according to the contents and duration of the courses in the Curriculum design. Credit based system is flexible curriculum pattern with many merits. It is devoid of many limitations associated with the conventional rigid pattern of curriculum. Each course is assigned a weight (credit) depending upon its relative importance to the programme of definite total credit rating. In addition, several elective papers (choices) have been included in order to suit for the career of the students.

The curriculum to be implemented with this system would allow students to migrate between different institutions due to their own compulsions without losing their precious time. This system also has a benefit for students to develop a strong footing in the fundamentals with flexibility in selecting courses of specialization in the discipline of his/her liking and abilities

T---- INTRODUCTION

- Master's degree course in chemistry would be of 100 credits, where one credit course of theory will be of one clock hour per week running for 15 weeks and one credit of practical course will consist of two clock hour per week running for 15 weeks.
- Every student shall complete 100 credits in four semesters. All semesters will have 24 credits each.
- Every student must clear 4 credits minor paper of other faculty/department in any semester organized by college.
- In each semester, there will be 4 theory papers of 4credits each. Thus, there will be 16 credits for theory papers in each semester. In each semester, practical course will be of 4 credits. 4 credits will be for project in each semester. The evaluation of 8 credits project will takes place by external examiner and internal faculty members in even semester (II and IV).
- Academic calendar showing dates of commencement and end of teaching and term end examination will be prepared and duly notified before commencement of each semester every year.

PAPER – 1(THEORY)

COURSE TITLE: TRANSITION METAL CHEMISTRY

PROGRAMME/CLASS:		YEAR-FIRST		SEMESTER: FIRST
MASTER OF SCIENCE				
PAPER-1				BJECT: CHEMISTRY
COURSE O	CODE: BO2O701	Г	COURSE TITLE: T	'ransition metal
			chemistry	1
Credits:				Core compulsory
Max. marks	s:		Min passing m	narks:
		Total no. of	Lectures=	T
Unit		Topic		No. of lectures
1.	Reaction Mecho	anism of Transition		
2	complexes, iner application of v kinetics of octa factors affectin conjugate base evidences in far reactions, react without metal reaction in squ mechanism of t	of a reaction, reactivity of metal rt and labile Complexes, kinetic alence bond and crystal field theories, hedral substitution, acid hydrolysis. g acid hydrolysis, base hydrolysis, mechanism, direct and indirect your of conjugate mechanism, anation ions igand bond cleavage. Substitution are planner complexes, the trans-effect, he substitution reaction, electron ons. Metal Complexes		
2.	Introduction, n	al Bonds and Meta netal carbonyl cluste m carbonyl clusters,		
3.	Higher borane mettalocarbora	s, carboranes, metall nnes.	loboranes and	
4.	Isopoly & hete	ropoly acid and salts	5	

0	
of syn	thesis, stability and decomposition pathways,
organ	ocopper in organic synthesis.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others. Or

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	e, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further Suggestions:	

PAPER – 2(THEORY)

COURSE TITLE: REACTION MECHANISM

PROGRAM	/ME/CLASS:	YEAR-FIRST		SEMESTER:
MASTER OF SCIENCE				FIRST
PAPER-2				BJECT: CHEMISTRY
COURSE (CODE: B020702T		COURSE TITLE: Rea	action Mechanism
Credits:				Core compulsory
Max. mark	S:		Min passing ma	rks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
		1		
1.	Carbocyclic co	mpound –		<u></u>
•	_	-		
		n benzenoid and not		
	*	terat and non-altern	e	
		energy level of Tt-m		
	annulenes, anti-aromaticity. aromaticity, homo-			
aromaticity, PO approach. Cor			ę	
c .		lecalins, effect of con	formation on	
reactivity.				
2.	Storoochomis	two. Flomonts of sum	amotry objectiv	
Ζ.	. Stereochemistry: Elements of symmetry, chirality, molecules with more than one chrial center, threo and		· ·	
		rs, methods of resolu		
	v		1 1 0	
	enantiotopic and diastereotopic atoms, groups and faces, stereospecific and stereoselective synthesis. Asymmetric synthesis. Optical activity in the absence			
of chrial carbon(biphenyls, allenes and spiranes).				
	or en la carbon orphenyis, anches and spiranes).			
3.	Reaction Mechanism : carbenes and nitrenes.			
-	Effect of struct	ture on reactivity - r	esonance and field	
		quantitative treatme		
		near free energy rel		
	substituent and reaction constants, Taft equation.		-	

4.	Aliphatic Nucleophilic Substitution: The S2, Syl, mixed Sy2 and SET mechanisms. Syl' & SN?'The neighbouring group mechanism, neighbouring group participation by it and & bonds. anchimeric assistance.Classical and non-classical carbocations, phenonium ions, norbornyl system, common carbocation rearrangements.The Syi mechanism. Necleophilic substitution at an allylic, Reactivity effects of substrate structure, attacking nucleophile, leaving group and reaction medium.
5.	Aromatic Electrophilic substitution - The arenium ion mechanism, orientation and reactivity, energy profile diagram, ortho-pora, ratio, ipso attack, orientation in other ring system. vilsmeier reaction Gattermann Koch reaction.
6.	Aromatic nucleophilic substitution The SNAr, Syl, benzene and SRN, mechanisms, reactivity, effect of substrate structure, leaving group and attacking nucleophile, The Von-Richter, Sommelet-Hacser.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others. Or

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course,	a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
buggested equivalent onnine courses.	
Further Suggestions:	

PAPER – 3(THEORY)

COURSE TITLE: QUANTUM, THERMODYNAMICS & BIOPHYSICAL

PROGRAMME/CLASS:		YEAR-FIRST		SEMESTER:
MASTER OF SCIENCE				FIRST
PAPER-3			1	Γ: CHEMISTRY
COURSE CODE	: BO2O7O3	3T	COURSE TITLE: Qu	
			Thermodynamic& bio	
Credits:				Core compulsory
Max. marks:			Min passing mar	rks:
Unit		Total no. of L	ectures=	N. Classic
	1 Quant	Topic cum Chemistry		No. of lectures
1.	· I. Qualit	um Chemistry		
	1. Quo	antum Chemistry		
	 (a) Introduction to Exact Quantum Mechanical Results: The Schrodinger equation and the postulates of quantum mechanics. Discussion of solution of the Schrodinger equation to some model systems viz particle in a three- dimension box, one dimensional harmonic oscillator, the rigid rotor, the hydrogen atom. (b) Approximate Methods: The variation theorem, linear variation principle. Perturbation theory (first order and non- degenerate). Applications of variation method and perturbation theory to the Helium atom. 			
	 (a) Classic partial mo molar heat of these qu of fugacity systems, se (b) Solution chemical passes mixture, T liquid solution 	lar free energy, partial t content and their sign antities. Concept of fug Application of phase r econd order phase trans ons: Thermodynamics botential of pure substan & fugacity, Chemical p Chermodynamic function tions, chemical potentian actions of non-ideal solu	properties of solution, nce, Chemical potential of otential of ideal gas ns of mixing, properties of al of non-ideal solution,	

(c) Non-Equilibrium Thermodynamics:
Thermodynamic criteria for non-equilibrium states, entropy production and entropy flow, entropy balance equations for different irreversible processes (e.g., heat flow, chemical reaction etc.) transformations of the \rightarrow generalized fluxes and forces, non-equilibrium stationary states, phenomenological equations, microscopic reversibility and Onsager's reciprocity reactions.
III. Cell Membrane & Transport of ions: Structure and functions of cell membrane, ion transport through cell membrane, irreversible thermodynamic treatment of membrane transport, Nerve conduction.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others. Or

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
	·

Course prerequisites: To study this course, a student must have had the chemistry in B.Sc. (Bachelor of Science)

Suggested equivalent online courses:

Further Suggestions:

PAPER – 4(THEORY)

COURSE TITLE: Analytical chemistry

PROGRAMME/CLASS:		YEAR-FIRST		SEMESTER:
MASTER OF SCIENCE				FIRST
PAPER-4			SUBJ	ECT: CHEMISTRY
COURSE CODE:	: B020704T		COURSE TITLE: Ana	alytical chemistry
Credits:				Core compulsory
Max. marks:		Min passing marks:		rks:
Total no. of Lectures=				
Unit		Topic		No. of lectures
1.	1. Errors a	nd Evaluation - Defin	ition of terms in	
means &		median, Precision S	tandard deviation,	
	relative s	tandard deviation, A	Accuracy - Absolute	
error, rel		ative error. Types o	f error in experiment	
data dete		rminate (systematic) in determinate (or	
		& gross, Sources of errors & the effects		
, , , , , , , , , , , , , , , , , , , ,		analytical data, stat		
1		terminate errors, T		

2.	Thermal Analysis - Theory, Methodology,Instrumentation & application of ThermometricAnalysis (TGA), Differential Thermal Analysis(DTA), Differential Scanning Calorimetry (DSC)& Thermometric titration.	
3.	Modern Voltammetric Methods - Theory & Instrumentation of polarography, Quantitative applications. Sampled Polarography, pulse polarography, Fast Linear Sweep Polarography, Cyclic Voltammetry, AC Polarography & Stripping voltammetry	
4.	. 4. Acid-Base equilibria & Buffer Solution - General concept of acid-base equilibria in water. Determination of pH & pH calculation for aqueous solutions of weak acid weak base, salt of	

	weak acid & weak base, Protolysis curve, buffer & buffer capacity.	
5.	5. Separation Techniques - Principles of Analytical separation analysis, Resolution gas chromatography (HPL-C), Ion exchange chromatography, general treatment of equilibria redox, complexion & precipitation titrations.	

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others. Or

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	

Suggested equivalent online courses:

Further suggestion

CHEMISTRY PRACTICAL

PROGRAMME/	CLASS:	YEAR-FIRST	SEMESTER:
MASTER OF SCIENCE			FIRST
PRACTICAL-1			ECT: CHEMISTRY
COURSE CODE	: B020705P	COURSE TITLE:	C
Credits:		Mission	Core compulsory
Max. marks:		Min passing mar Total no. of Lectures=	rks:
Unit		Topic	No. of lectures
1.	Qualitat	ive and Quantitative Analysis	NO. OF feetures
1.	Zuantat		
	📥 Le	ess common metal ions- TI, Mo, W, TI,	
	Zı	r, Th, V, U (two metal ions in	
		tionic/anionic forms)	
		soluble oxides, sulphates and halides	
2. Organic Chemistry			
	0.11		
	Qualitat	ive Analysis	
	📥 Se	paration, purification and identification of	
		mpounds of binary mixture (one liquid and	
		e solid) using tic and column	
		romatography, chemical tests. IR spectra	
		be used for functional group	
	identification."		
Estimation of amines/phenols using bromate			
	bromide solution/or acetylation method		
Determination of iodine and Saponification			
	Va	lues of an oil sample.	

3.	Adsorption	
	To study surface tension - concentration relationship for solutions (Gibbs equation)	
	Phase Equilibria	

 Determination of congruent composition and temperature of a binary system (e.g. Diphenylamine-benzophenone system) Determination of glass transition temperature of a given salt (e.g., CaCl2) conductometrically. To construct the phase diagram for three component system (e.g., chloroform-acetic- acid-water).
A. Conductometry
 Determination of the velocity constant, order of the reaction and energy of activation for saponification of ethyl acetate by sodium hydroxide conductometrically.
Determination of solubility and solubility product of sparingly soluble salts (e.g., PbSO BaSO4) conductometrically.
Determination of the strength of strong and weak acids in a given mixture conductometrically.
To study the effect of solvent on the conductance of AgNO3/acetic acid and to determine the degree of dissociation and equilibrium constant in different solvents and in their mixtures (DMSO, DMF, dioxane, acetone, water) and to test the validity of Debye-Hückel- Onsager theory.
Determination of the activity coefficient of zinc ions in the solution of 0.002 M zinc sulphate using Debye Hückel's limiting law.

This course can be opted as an elective by the students of following subjects: Chemistry in B.Sc. (Bachelor of Science)

Suggested Continuous Evaluation Methods:

Viva voce	(10 marks)
Mock test	(10 marks)
Overall performance	(05marks)

Course prerequisites: To study this course, a student must have had the chemistry in B.Sc. (Bachelor of Science)

Suggested equivalent online courses:

Further suggestion

CHEMISTRY PROJECT

PROGRAMME/CLASS:	YEAR- FIRST		SEMESTER:
MASTER OF SCIENCE			FIRST
SUBJEC	CT: CHEMISTR	Y	
COURSE CODE: B020706	δR	COURSE TITLE: I	PROJECT/
		INDUSTRIAL TRAIN	ING / INTERNSHIP
The main objective of the exposure of students towards project/dissertation is to elevate their understanding into the practical and experimental aspects of some targeted areas of chemistry. This course will develop their analytical ability and will provide them an apt exposure to work in any research group and will motivate them to execute research in the area of their interest in chemical sciences. Course Outcome: 1. students will be able to plan and strategize a scientific problem, and implement it within a reasonable time frame. 2. It is expected that after completing this project dissertation, students will learn to work independently and how to keep accurate/readable record of assigned project. 3. In addition, students will be able to know the library search and handle the data in a meaningful way 4. Also, students will be able to interpret the spectral data independently. 5. Subsequently, the students should be able to critically examine research articles, and improve their scientific writing/communication skills and power point presentation.			
Credits:			Core compulsory
For project work and dissertation, the area of the work would be to be decided by the advisor/mentor. On completion of the project work, students have to submit the work in the form of a dissertation followed by oral presentation in the presence of faculty members and external expert in semester II .			

PAPER – 1(THEORY)

COURSE TITLE: SOME PROPERTIES OF COORDINATION COMPLEXES

PROGRAMME	/CLASS:	YEAR-FIRST		SEMESTER:
MASTER OF SC	IENCE			Second
PAPER-1				ECT: CHEMISTRY
COURSE CODE	: B020801T		COURSE TITLE: SO	
			COORDINATION COM	
Credits:			N/' '	Core compulsory
Max. marks:		Tatal na af	Min passing ma	irks:
Unit		Total no. of	Lectures=	No. of lectures
	Basics –	Topic		No. of fectures
1.		rv elements and sv	mmetry operations,	
	•	mmetry group,	,,	
		ation of molecules	in point groups.	
2.	Flectro	nic spectra of coo	rdination complexes	
Ζ.	Lieuto	ine spectra or coor	i uniacion complexes	
	origin of	f colour. Lambert-F	Beer's Law, Deviations	
	0		Cause of Deviations,	
		n spectrum, Absorp		
			tion metal complexes,	
		ons rule their breakdown of miles.		
3.	Charge	ge Transfer spectrum		
		0		
	0	of spectrum, types o	1	
		MLCT, MMCT, ef	fect of solvent	
	polarity.	r. C-T spectrum on		
4.	Optical	Isomerism:		
	Optical i	l isomerism in oh complexes Isomerisin		
			unsymmetrical ligands	
			te with monodentated	
	ligands,	isomerism from ligand conformetin &		

	chirality, optical is mensm in Td complexes & square planer Complexes, Stereochemical notations for Fat complexes, absolute Configuration of Complexes; dal system, R&S system, X & A system Δ At resolution of enantiomers, spectroscopic methods for determination of absolute configuration of Complexes; ORD & CD, assignment of absolute Configuration using ORD&CD.	
5.	Magnetic Properties in Complexes: Anomalous magnetic 27 moment in Oh Ne ² ; F2+ ,co2+Complex Td & Square planner complexes, factors responsible for anomely's quititrium between two spin states; magnetically hon- equivalent sites in unit cell's Solute-Solvent interaction; solute-Solute interaction; Configurations equilibrium.	

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others. Or

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course,	a student must have had the chemistry in B.Sc.
(Bachelor of Science)	· ·
· · · · · · · · · · · · · · · · · · ·	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 2(THEORY)

COURSE TITLE: (Reaction Mechanism-II and Organometallics)

PROGRAMME/	CLASS:	YEAR-FIRST		SEMESTER:
MASTER OF SC	IENCE	E		Second
PAPER-2			n	CT: CHEMISTRY
COURSE CODE	: B020802T		COURSE TITLE: (Re	action Mechanism-II
			and Organometallics)	
Credits:				Core compulsory
Max. marks:			Min passing man	rks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	📥 Ad	Addition to Carbon Multiple Bonds:		
			ical aspects of addition	
			niles, nucleophiles and	
free radicals, regio and chemoselectivity,				
orientation and reactivity. Addition to				
	cyclopropane ring. Hydrogenation of double and			
	triple bo	riple bonds, hydrogenation of aromatic rings.		
	Hydroboration. Michael reaction, Sharpless			
	asymmet	tric epoxidation.		

2.	4 Addition to Carbon-Hetero Multiple Bonds:	
	Mechanism of metal hydride of saturated carbonyl compounds, acids, esters and nitriles,	
3.	4 Elimination Reactions:	
	The E2, El and ElcB mechanisms and their spectrum. Orientation of the double bond Reactivity effects of substrate structures, attacking base, the leaving group and the medium.	

4.	Pericyclic Reactions:	
	Molecular orbital symmetry, Frontier orbitals of ethylene, 1,3-butadiene, 1,3,5-hexatriene and allyl system. Classification of pericyclic reactions. Woodward-Hoffman correlation diagrams. FMO and PMO approach. Electrocyclic reaction- conrotatory and disrotatory motions, 4n, 4n+2 and allyl systems. Cycloadditions-antarafacial and suprafacial additions, 4n and 4n+2 systems, 2+2 addition of ketenes, 1,3 dipolar cycloadditions and cheleotropic reactions.	
	Sigmatropic rearrangements - superfacial and antarafacial shifts of H, sigmatropic shifts involving carbon moieties, 3,3- sigmatropic rearrangements. Claisen, Cope and aza-Cope rearrangements. Fluxional tautomerism. Ene reaction.	
5.	 Organometallic reagents Principle, properties and application of the following inorganic synthesis with mechanistic details. 	
	Transition metals - Fe, Co, Rh, compound:	

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others. Or

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
,	
Course prerequisites: To study this course	e, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	, , ,
Suggested equivalent online courses:	

Further suggestion

PAPER – 3(THEORY)

COURSE TITLE: (Dynamics, Surface, Electro)

PROGRAMME/	CLASS:	YEAR-FIRST		SEMESTER:
MASTER OF SCIENCE				Second
PAPER-3		I	SUB	JECT: CHEMISTRY
COURSE CODE	: B020803T	-	COURSE TITLE: (Dy	ynamics, Surface,
			Electro)	
Credits:				Core compulsory
Max. marks:			Min passing ma	rks:
		Total no. of		
Unit		Topic		No. of lectures
1.	📥 Ch	emical Dynamics:		
	Method of	of determining rate	laws, collision theory	
	of reaction	on rates, steric factor	r, activated complex	
	theory, a	rrhenius equation a	nd the activated	
	complex	theory, tonic reaction	ons, kinetic salt effects,	
	-	ate kinetics.		
		c chain (hydrogen-bromine reaction,		
	pyrolysis of acetaldehyde, decomposition of			
	ethane), photochemical (hydrogen-bromine and			
	hydroger	n-chlorine reactions) and		
	oscillator	ry reactions (Belousov-Zhabotinsky		
	reaction)	· · ·		
2.	📥 Su	rface Chemistry:		
			· · · · · ·	
	• •	-	sion, capillary action,	
	-		rved surface (Laplace	
	-), vapour pressure of		
			isotherm, estimetion	
		surfaces (By BET Equation only) surface films		
	on liquid	liquids (Electro-kinetic phenomenon).		
	(b) Mice	elles: Surface active	agents, classification	
	• •		ellization, hydrophobic	
			concentration (CMC),	
			surfactants, counter	

	ion binding to micelles, thermodynamics of micellization phase separation and mass action models, solubilization, micro emulsion, reverse micelles.
3.	 Electrochemistry Electrochemistry of solutions. Debye-Huckel- Onsager treatment and its extension, ion solvent interactions. of electrified interface. Guoy- Champman, Stern-theories of electrified surfaces. Electrocatalysis influence of various parameters, Hydrogen electrode. Polarography theory, Ilkovic reaction; half wave potential and its significance, introduction to corrosion, homogenous theory, forms of corrsion, corrosion monitoring and prevention methods.

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others. Or

	$(10 \dots 10)$	
Assessment and presentation of	(10 marks)	
Assignment		
04 tests (Objective): Max marks of each	(10 marks)	
test = 10		
(average of all 04 tests)		
Overall performance throughout the	(05 marks)	
semester. Discipline. participation in		
different activities)		
,		
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.	
(Bachelor of Science)		
Suggested equivalent online courses:		

Further suggestion

PAPER – 4(THEORY)

COURSE TITLE: (Chemical Kinetics)

PROGRAMME/	CLASS:	YEAR-FIRST		SEMESTER:
MASTER OF SCIENCE				Second
PAPER-4			SUB	JECT: CHEMISTRY
COURSE CODE	: B020804T	-	COURSE TITLE: (Cl	hemical Kinetics)
Credits:				Core compulsory
Max. marks:			Min passing ma	rks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	Tr	ansition State Theo	ory:	
	tra res tre Rie Ra	pplication of statistical mechanics to ansition state theory with experimental esults. Theories of unimolecular reactions- eatment of Lindmann, Hinshelwood, iceRampsperger-Kassel (RRK) and Rice- ampsperger Kassel-Marcus (RRKM).		
2.	Re	action in solution:		
	(si int en str rea pre sig inf ele lin	action in solution: action between ions; effect of solvent agle and double sphere models), erpretation of frequency factor and ropy of activation, influence of ionic ength, salt effect and reaction mechanism, action involving dipoles, influences of ssure on reaction rates in solution, nificance of volume of activation, uence of substitutent on reaction rates, ctronic theories of organic reactivity, ear free energy relationship, the Hammett action, significance of the Taft equation		

3.	Kinetics of polymerization reaction:	
	Condensation, addition and ring opening polymerization, mechanism of polymerization (molecular free radical, cationic, and anionic mechanism), degree of polymerization and kinetics, chain length, kinetics of co polymerization.	
4.	Experimental Techniques for Fast Reaction: flow techniques, relaxation method, flash photolysis	

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others. Or

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	

Course prerequisites: To study this course, a student must have had the chemistry in B.Sc. (Bachelor of Science)

Suggested equivalent online courses:

CHEMISTRY PRACTICAL

PROGRAMME/	'CLASS:	YEAR-FIRST		SEMESTER:
MASTER OF SCIENCE				second
PRACTICAL-1				ECT: CHEMISTRY
COURSE CODE	: B020805P		COURSE TITLE:	
Credits:				Core compulsory
Max. marks:			Min passing mar	·ks:
T T 1		Total no. of Le	ectures=	NT Cl
Unit	- Car	Topic	an afterna matal lana	No. of lectures
1.		oaration and determinat Ni, Ni-Zn C-Fc clc. invo		
		vimetric methods	string volumetric and	
	Pre	parations		
	Dropa	nation of solooted in on	mini compounds	
		ration of selected inor heir studies by I.R. elec		
		pauer, E.S.R. and mag		
		rements. Handling of	- •	
	sensit	ive compounds		
	(1)) VO (acac)2		
	(2)) TIO(CHaNO)22H2O		
	(3)) cis-K[Cr(C2O4)2(H2	2O)2]	
	(4)) Na[Cr(NH3)2(SCN)	4]	
	(5)) Mn(acac)3		
	(6)) Ks[Fe(C2O4)3]		
	1-			
) Prussian Blue, Turnl	oull's Blue.	
1	1			

	$(8) \operatorname{Co}(\mathrm{NH3})][\operatorname{Co}(\mathrm{NO2})]$	
	(9) cis-[Co(trien) (NO2)2]CI.H2O	
	(10) Hg[Co(SCN)4]	
	(11) $\Box Co(Py) 2Clal$	
	(12) [Ni(NH3)]Cla	
	(13) Ni(dmg)2	
	(14) [Cu(NH3)]SO, H2O Grganic Synthesis	
2.	Organic Synthesis	
	Acetylation: Acetylation of cholesterol and separation of cholesteryl acetate by column chromatography	
	Oxidation: Adipic acid by chromic acid oxidation of cyclohexanol Grignard reaction: Synthesis of triphenylmethanol from benzoic acid	
	Aldol condensation: Dibenzal acetone from benzaldehyde Sandmeyer reaction: p-Chlorotoluene from p-toluidine	
	Acetoacetic ester Condensation: Synthesis of ethyl- n-butylacetoacetate by A.E.E. condensation.	
	Cannizzaro reaction: 4-Chlorobenzaldehyde as substrate	
	Friedel Crafts Reaction: B-Benzoyl propionic acid from succinic anhydride and benzene Aromatic electrophilic sustitutions: Synthesis of p-nitroaniline and p-bromoaniline	
	The Products may be Characterized by Spectral Techniques	
3.	Chemical Kinetics	
	 Determination of the effect of (a) Change of temperature 1b) change ascertif reactants and catalyst and (c) lonic strep of the red on the co hydrolysis of an esterionic reactions 	
	ii. Determination of the velocity constant of hydrolysis of an este raden si mocis media.	

iii.	Determination of the rate constant for the oxidation of iodide so by forego parood studying the kinetics as an iodine clock reaction	
iv.	Flowing clock reactions (Ref: Experiments in Physical Chemistry by Showmaker)	
V.	Determination of the primary salt effect on the kinetics of ionic reaction and testing of the Bronsted relationship (iodide ion is oxidised by persulphate ion)	
vi.	Oscillatory reaction.	
Solu	itions	
	i. Determination of molecular weight of non-volatile and non- electrolyte/electrolyte by cryoscopic method and to determine the activity coefficient of an electrolyte.	
	ii. Determination of the degree of dissociation of weak electrolyte and to study the deviation from ideal behaviour that occurs with a strong electrolyte.	
B. P	Potentiometry/pH metry	
i.	Determination of strengths of halides in a mixture potentiometrically.	
ii.	Determination of the valency of mercurous ions potentiometrically.	
iii.	Determination of the strength of strong and weak acids in a given mixture using a potentiometer/pH meter.	
iv.	Determination of temperature dependence of EMF of a cell.	
v.	Determination of the formation constant of silver-ammonia complex and stoichiometry of the complex potentiometrically.	
vi.	Acid-base titration in a non-aqueous media using a pH meter.	

vii.	Determination of activity and activity coefficient of electrolytes.
viii.	Determination of the dissociation constant of acetic acid in DMSO, DMF, acetone and dioxane by titrating it with KOH.
ix.	Determination of the dissociation constant of monobasic/dibasic acid by Albert-Serjeant method.
х.	Determination of thermodynamic constants, AG, AS and AH for the reaction by e.m.f. method. $Zn + H_2SO \rightarrow ZnSO4 + 2H2$,
Pola	rimetry
	i. Determination of rate constant for hydrolysis/inversion of sugar using a polarimeter.
	ii. Enzyme kinetics -inversion of sucrose

This course can be opted as an elective by the students of following subjects: Chemistry in B.Sc. (Bachelor of Science)		
Suggested Continuous Evaluation Methods:		
Viva voce	(10 marks)	
Mock test	(10 marks)	
Overall performance	(05marks)	
Course prerequisites: To study this course, a student must have had the chemistry in B.Sc. (Bachelor of Science)		
Suggested equivalent online courses:		
Further suggestion		

CHEMISTRY PROJECT

PROGRAMME/CLASS:	YEAR- FIRST		SEMESTER:	
MASTER OF SCIENCE			SECOND	
SUBJEC	CT: CHEMISTRY			
COURSE CODE: B020806R COURSE TITLE:				
		PROJECT/INDUSTRIAL TRAINING / INTERNSHIP		
Semester I & II of Masters the main objective of the exposure of students towards project/dissertation is to elevate their understanding into the practical and experimental aspects of some targeted areas of chemistry. This course will develop their analytical ability and will provide them an apt exposure to work in any research group and will motivate them to execute research in the area of their interest in chemical sciences.				
 Course Outcome: 1. students will be able to plan and strategize a scientific problem, and implement it within a reasonable time frame. 2. It is expected that after completing this project dissertation, students will learn to work independently and how to keep accurate/readable record of assigned project. 3. In addition, students will be able to know the library search and handle the data in a meaningful way 4. Also, students will be able to interpret the spectral data independently. 5. Subsequently, the students should be able to critically examine research articles, and improve their scientific writing/communication skills and power point presentation. 				
Credits:			Core compulsory	
For project work and dissertation, the area of the work would be to be decided by the advisor/mentor. On completion of the project work, students have to submit the work in the form of a dissertation followed by oral presentation in the presence of faculty members and external expert in semester II .				

PAPER – 1(THEORY)

COURSE TITLE: SPECTROSCOPY-I

PROGRAMME/C MASTER OF SCIE		YEAR- SECOND	SEMESTER: THIRD	
PAPER-1		SUB.	ECT: CHEMISTRY	
COURSE CODE: B020901T COURSE TITLE: Spec		ectroscopy - I		
Credits:			Core compulsory	
Max. marks:		Min passing marks:		
Total no. of Lectures=				
Unit		Topic	No. of lectures	
1. l	Unifying P	rinciples		
	Electromagnetic radiations, interaction of electromagnetic radiation with matter absorption, emission, Uncertainity relation and natural line width and natural line broadening, transition probability, transition moment, selection rules, intensity of spectral lines, Born Oppenheimer approximation, rotational, vibrational and electronic energy levels.			
f e	Microwave Spectroscopy: Classification of molecules, rigid rotor model, effect of isotopic substitution on the transition frequencies, intensitities, non-rigid rotor. Stark effect, nuclear and electron spin interaction and effect of external field, Applications.			
	Infrared diatomic constant	brational Spectroscopy: frared Spectroscopy: Vibrational energies of atomic molecules, zero-point energy, force instant and bond strengths; anharmonicity, forse potential energy diagram, vibration-		

	 rotation spectroscopy, vibrations of polyatomic molecules. Selection rules, normal modes of vibration, group frequencies, overtones, factors affecting the band positions and intensities, far IR region. Characteristic vibrational requencies of alkane, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols and amines. Detailed study of vibrational frequencies of carbonyl compounds (ketones, aldehydes, esters, amides, acids, anhydrides, lactones, lactams and conjugated carbonyl compounds). Effect of hydrogen bonding and solvent effect on vibrational frequencies, overtones, combination bands and Fermi resonance. FTIR. IR of gaseous, solids and polymeric materials. 	
4.	Ultraviolet and Visible Spectroscopy:Various electronic transitions (185-800 nm). Beer- Lambert law, effect of solvent on electronic transitions, ultraviolet bands for carbonyl compounds, unsaturated carbonyl compounds, dienes, conjugated polyenes. Fieser-Woodward rules for conjugated dienes and carbonyl compounds, ultraviolet spectra of aromatic and heterocyclic compounds. Steric effect in biphenyls.	
5.	Raman Spectroscopy:Classical and quantum theories of Raman effect.Pure rotational, vibrational and vibrational-rotational Raman spectra, selection rules, mutualexclusion principle. Resonance Ramanspectroscopy.	
6.	X-ray Diffraction: Bragg condition, Miller indices, Laue method, Bragg method, Debye-Scherrer method of X-ray structural analysis of crystals, index reflections, identification of unit cells from systematic absences in diffraction pattern. Structure of simple lattices and X-ray intensities, structure factor and its relation to intensity and electron density, phase	

problem. Description of the procedure foran X-ray structure analysis, absolute configuration of molecules, Ramachandran diagram.	

Suggested Continuous Evaluation Methods: Students can be evaluated on the basis of score obtained in a mid-term exam, together with the performance of other activities which can include short exams, in-class or on-line tests, home assignments, group discussions or oral presentations, among others. Or

Assessment and presentation of	(10 marks)	
Assignment		
04 tests (Objective): Max marks of each	(10 marks)	
test = 10		
(average of all 04 tests)		
Overall performance throughout the	(05 marks)	
semester. Discipline. participation in		
different activities)		
,		
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.	
(Bachelor of Science)	, , ,	
()		
Suggested equivalent online courses:		
Further suggestion		

PAPER – 2(THEORY)

COURSE TITLE: (Organic Synthesis-1 and Photochemistry)

PROGRAMME/	CLASS:	YEAR-SECOND		SEMESTER:
MASTER OF SCIENCE				THIRD
PAPER-2				CT: CHEMISTRY
COURSE CODE	: B020902T		COURSE TITLE: (Or	ganic Synthesis-1
			and Photochemistry)	
Credits:				Core compulsory
Max. marks:			Min passing ma	rks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	Oxidati	on:		
		tion, Different oxida	1	
Hydrocarbo			natic rings, saturated	
C-H groups (activated and unactivated).				
Alcohols, diols, aldehydes, ketones, ketals and				
	carboxylic acids.			
Amines, hydrazines, and sulphides.				
Oxidatio		ns with ruthenium t		
	iodobenz	ene diacetate and th	nallium (III) nitrate	

2.	Reduction:	
	Introduction, Different reductive processes.	
	Hydrocarbons-alkanes, alkenes, alkynes and aromatic rings. Carbonyl compounds aldehydes, ketones, acids and their derivatives. Epoxides, Nitro, nitroso, azo and oxime groups. Hydrogenolysis.	

3.	Rearrangements:
	General mechanistic considerations - nature of migration, migratory aptitude, memory effects.
	A detailed study of the following rearrangments. Pinacol-pinacolone, Wagner-Meerwein, Demjanov, Benzil-Benzilic acid, Favorskii, Amdt-Eistert synthesis, Neber, Beckmann, Hoffinan, Curtius, Schmidt, Baeyer- Villiger, Shapiro reaction.
4.	Photochemistry -
	(a) Photochemical Reactions:
	Intraction of electromagnetic radiation with matter, types of excitations, fate of excited molecules, quantum yield, transfer of excitation energy.
	(b) Photochemistry of Alkenes:
	Intramolecular reactions of the olefinic bond - geometrical isomerism, cyclisation reactions, rearrangement of 1,4- and 1,5- diene.
	(c) Photochemistry of Carbonyl compounds:
	Intramolecular reactions of carbonyl compounds - Saturated, cyclic and acyclic,- unsaturated and, unsaturated compounds, cyclohexadienones.
	(d) Photochemistry of Aromatic compounds:
	Isomerisations, additions and substitutions.
	(e) Miscellaneous Photochemical Reactions:
	Photo-Fries reactions of anilides, Photo-Fries rearrangement, Barton reaction, Singlet molecular oxygen reactions.

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 3(A)(THEORY)

COURSE TITLE- CORRDINATION CHEMISTRY

PROGRAMME/CLASS:		YEAR- SECOND	SEMESTER:
MASTER OF SCIENCE			THIRD
PAPER-3(A)		-	BJECT: CHEMISTRY
COURSE CODE	: B020903T	(A) COURSE TITLE: CORE	
Credits:			OPTIONAL SUBJECT
Max. marks:		Min passing n	narks:
		Total no. of Lectures=	
Unit		Topic	No. of lectures
1.	. Electroni	c configuration in multi electron system:	
2.	orbital an angular n coupling bet\vcen formation paramete Molecula Symmetr molecula	n numbers and vectors, coupling of ngular momenta, coupling of spin nomenta, Spin-orbit coupling, L-S scheme, i- coupling scheme, relation electron configurations and terms, hole n, Hunds rules, inter electron repulsion ers, spin-orbit coupling parameters. r orbital theory: by consideration for formation of a and it r orbitals in Oh, Td, D4h complexes, r orbital energy level diagrams of Oh, complexes	
3.	octahedra symmetr Transitic correlatio Tanabe-S	weak crystal fields on free ion terms in al, square planer and tetrahedral ies, Orgel diagrams, mixing of terms. on from weak to strong field and ons for only d case. Non-crossing rule, Sugano diagrams, ligand field theory, nemical and Nephlauxetic series.	

4.	spectra of complexes:	
	Selection rules, band intensities, factors influencing band width, effect of temperature, interpretation of spectra of aqueous solution of M (H spectra of spin free and spin paired MA Jahn Teller distortion and its effect on electronic spectra.	
5.	Magnetic properties	
	Magnetic susceptibility - Pole strength, magnetic induction, intensity of magnetization, magnetic moment, diamagnetism, paramagnetism ferromagnetism and nilti ferromagnetism. Sources of paramagnetism (orbital and spin magnetic moment), thermal energy and magnetic property, magnetic moment for multiplet width large as compared to KT, small as compared to KT and to KT, magnetic properties of Oh, Td, D complexes based on crystal field model, spin cross over, quenching of orbital magnetic moment by crystal held, spin pairing in Oh and non-Oh complexes, spin cross over by inter electronic repulsion, b9 substitution in ligands, effect of pressure, elucidation of structure of complexes by magnetic nature in tetrahalocobolt(II) ions, isothiocyanatobis (p- toluidine) cobalt (U). Td & Oh complexes ofNi(II), square planar complexes.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 3(B)(THEORY)

COURSE TITLE: (Medicinal Chemistry)

PROGRAMME/	/CLASS:	YEAR-SECOND		SEMESTER:
MASTER OF SCIENCE				THIRD
PAPER-3(A)			SUE	BJECT: CHEMISTRY
COURSE CODE	: B020903(B)	COURSE TITLE: (I	Medicinal Chemistry)
Credits:			· · · · · ·	OPTIONAL SUBJECT
Max. marks:			Min passing m	narks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	Drug De	esign:		
			1 1 (
		*	d compound, concept	
		ugs, structure activi		
		ctors affecting bioad		
			pioisosterism, spatial	
		ation, theories of dru		
0		cy theory, rate theor		
2.	ANTIBIC	JICS:		
	Coll wall	higgen the sig in hibit		
	Cell wall biosynthesis inhibitors, B-Lactam ring, Antibiotics inhibiting bio synthesis of Protein.			
	Synthesis of Penicillin G, Penicillin V, Chloramphenicol.			
	Chioran	phemeor.		
3.	Antima	larials:		
	Chemoth	erapy of malaria: SA	AR, synthesis of	
	Primaqu	ine, Chloroquine and		
4.	Antineo	plastic Drugs:		
	Cancer c	hemotherapy, role o	f alkylating agents	
		metabolites in the treatment of cancer.		
	Synthesis of Cyclophosphamide, Uracil,			
			, ,	

	Mustards and 6 mercaptopurine. Introduction to hormone and natural products in cancer therapy.	
5.	A general study of following classes of drugs: (Structure and mode of action only).	
	Antifungal Drugs	
	Antiviral Drugs	
	General anaesthetics	
	Hypnotics and Sedatives	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 3(C)(THEORY)

COURSE TITLE: (Solid State Chemistry)

PROGRAMME/CLASS:		YEAR-SECOND		SEMESTER:
MASTER OF SCIENCE				THIRD
PAPER-3(C)			SUB	JECT: CHEMISTRY
COURSE CODE	: B020903T	-(C)	COURSE TITLE: (S	Solid State Chemistry)
Credits:			· · · · ·	OPTIONAL SUBJECT
Max. marks:			Min passing m	narks:
		Total no. of	<u> </u>	
Unit		Topic		No. of lectures
1.	Imperfe	ction in Crystals: -		
		-		
	Points de	efects: Schottky ans	Frenkel defects.	
	Colour c	enters line defects: H	Edge and screw	
	Dislocati	ons. Burgers vector	, dislocation	
	densities	. dislocation multipl	icity and slip	
		on and crystal growth.		
	Surface imperfection: grain boundaries.			
2.	Band the	eory of Solids:		
Metals, ins		nsulators, semicond	uctor, electronic	
	structure	e of solids - Band the	eory, Band structure	
	of metals	, insulators and sem	niconductors,	
		-Extrinsic semicond		
	Hall effe	cts Seebeck coefficie	nt. p - n junction.	
	Organic	semiconductors.		
3.	Superco	nductivity:		
		stance and the trans		
Super conductivity and periodic table. Magnetic				
properties. Theory of superconductivit				
theory).		Type I and Type II	-	
Hard sup		perconductors. Surfa		
	supercon	ducting magnets. P	reparation of	
	supercon	ducting materials. F	Preparation of 1-2-3	
	& 2-1-41	materials.		

4.	Nucleation and crystal growth: -	
	Homogenous and heterogenous nucleation. Equilibrium condition for a curved interface. Critical nuclei. Theory of nucleation rate. Crystallisation of lamellar eutectics. Dendritic growth and peritectic solidification.	
	Preparation of single crystals from vapour, melt and solution.	
5.	Solid State Reaction:	
	Classification, Nature of solid-state reactions. Reaction involving single solid phase, solid-gas reaction, solid-solid reaction, solid-liquid reaction, intercalation chemistry. Reaction of organic solids, factors affecting solid state reactivity.	
6.	Magnetic, dielectric and optical properties of solids. Behaviour of substances in a magnetic field, effect of temp. Curie and Curie-Weiss Laws, Selected examples of magnetic materials (TM and alloys, TM oxides Spinelle) their structure and properties. Dielectric constant and dictectric materials-Luminescence, Phosphors, Lasers-ruby lasers & Nd Lasers.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course (Bachelor of Science)	e, a student must have had the chemistry in B.Sc.
Suggested equivalent online courses:	
Further suggestion	

PAPER – 4(A)(THEORY)

COURSE TITLE: (STRUCTURAL INORGANIC CHEMISTRY)

PROGRAMME/	CLASS:	YEAR-SECOND		SEMESTER:
MASTER OF SCIENCE				THIRD
PAPER-4(A)			SUB	JECT: CHEMISTRY
COURSE CODE	: B0209041	Г(A)	COURSE TITLE: ST	RUCTURAL INORGANIC
		1	CHEMISTRY	
Credits:				OPTIONAL SUBJECT
Max. marks:			Min passing m	narks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	Nuclear	Magnetic spectros	scopy: -	
		tact & pseudo Conta		
		nuclear relaxation,		
		g biochemical system		
		metal nuclides with	emphasis on $^{\wedge}$ 195	
	1	19 Sn NMR.		
2.	Electror	n resonance spectro	oscopy-	
		e coupling, spin pol		
		sition metal ions, sp		
		ificance of g-tensors		
			having one unpaired	
		including biologica		
	[BH3]-	c free radicals such a	as ΓΠ4, Γ2 and	
2	<u> </u>	uer spectroscopy: -		
3.	WIOSSDa	uer spectroscopy		
	Basic Pri	inciples spectral par	rameters and	
Basic Principles, spectral parameters and spectrum display Application of the technique to				
	-		ructures of fe2+ and	
		e^{3} compounds inc		
		liate spin, (2) Sn+2 a		
			Bond, coordination	
	-		etection of oxidation	
		l inequivalent MB at		

4.	Vibrational Spectroscopy:	
	Symmetry and shapes of ABZ, AB3, AB4. AB, and AB6 mode of bonding of ambidentate ligands, ethylenediamine and diketones complexes.	
5.	Molecular Spectroscopy:	
	Energy levels, molecular orbitals, vibrionic transitions, vibrational progressions and geometry of the excited states, internal conversion, charge-transfer spectra. Franck- Condon Principle, Spectra of Transition metal Complexes.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	e, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	

Suggested equivalent online courses:

Further suggestion

PAPER – 4(B)(THEORY)

COURSE TITLE: (CHEMISTRY OF NATURAL PRODUCTS)

PROGRAMME/	CLASS:	YEAR- SECOND		SEMESTER:
MASTER OF SCIENCE				THIRD
PAPER-4 (B)			SUB	JECT: CHEMISTRY
COURSE CODE	: B020904T	(B)	COURSE TITLE: (C PRODUCTS)	CHEMISTRY OF NATURAL
Credits:				OPTIONAL SUBJECT
Max. marks:			Min passing m	narks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	Terpeno	oids and Carotenoi	ds:	
	isolation, determin determin the follow Menthol	ation, nomenclature, occurrence, , general methods of structure nation, isoprene rule. Structure nation, stereochemistry and synthesis of wing representative molecules: Citral, and -Carotene.		
2.	Alkaloids: Definition, nomenclature and physiological action, occurrence, isolation, general methods of structure elucidation, degradation, classification based on nitrogen heterocyclic role of alkaloids in plants. Structure, stereochemistry, synthesis of the following: Nicotine, Quinine			

3.	Steroids:	
	Occurrence, nomenclature, basic skeleton, Diel's hydrocarbon and stereochemisry, Isolation, structure determination and synthesis of Cholesterol, Testosterone, Progestrone, Aldosterone.	
4.	Plant Pigments:	
	Occurrence, nomenclature and general methods of structure determination, Isolation and synthesis of Quercetin, Cyanidin, Biosynthesis of flavonoids: Acetate pathway and Shikimic acid pathway.	
5.	Porphyrins:	
	Structure and synthesis of Haemoglobin and Chlorophyll.	
6.	Prostaglandins:	
	Occurrence, nomenclature, classification and physiological effects. Synthesis of PGE2 and PGF20	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	e, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 4(C)(THEORY)

COURSE TITLE: (ELECTROCHEMISTRY)

PROGRAMME/CLASS:		YEAR- SECOND		SEMESTER:
MASTER OF SCIENCE				THIRD
PAPER- $4(C)$				BJECT: CHEMISTRY
COURSE CODE	: B0209041	-(C)	COURSE TITLE: (F	ELECTROCHEMISTRY)
Credits:				OPTIONAL SUBJECT
Max. marks:			Min passing m	arks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	•	Coefficient and Io	nic Migration in	
	electroly	ytic solution:		
			ebye-Huckle theory	
		n interaction and act	•	
		lity and limitation o		
			for finite sized ions,	
		ion solvent interacti	·	
		nt. Pair wise associat		
). Modification of D-	
	H-O theory to account for ion pair formati01. Determination of association constant from			
conductance.				
2.	Electric	al Double Layer at		
		al/semiconductors-electrode interface:		
	Thermo	odynamics of doub	ole layer,	
	electroc	apillarity equation	n Determination	
	of surfa	surface excess and other chemical		
	parameter electrocapillarity, excess charge,			
	capacitance and surface excesses. Metal			
Water interaction contact adsorption, its				
influence on capacity of in-		-		
		- •	-	
	capacity - potential curve, Semiconductor/electrolyte interface,			
		v		
	capacity of space charge region.			

3.	Electrode Kinetics:	
	Butler - Volmer equation under equilibrium (exchange current density) and non-equilibrium. conditions, low and high field approximations. Polarizable and non-polarizable interfaces, multistep reactions a near equilibrium relation between current density and over potential, concept of rate determining step, determination of reaction order,	
4.	Electrocatalysis : comparision of electrocatalytic activity, importance of oxygen reduction and hydrogen evolution reaction and their mechanisms	
5.	Concentration cells: Cells with &without transference, concentration cells involving mixing of electrolyte. Amalgam cell liquid junction potential, Membrane potential.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	e, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 4(D)(THEORY)

COURSE TITLE: Bioinorganic Chemistry

PROGRAMME	/CLASS:	YEAR-SECOND		SEMESTER:	
MASTER OF SCIENCE				THIRD	
PAPER-4 (D)			SUB	JECT: CHEMISTRY	
COURSE CODE	E: B020904T	-(D)	COURSE TITLE: B	ioinorganic Chemistry	
Credits:				OPTIONAL SUBJECT	
Max. marks:			Min passing m	narks:	
		Total no. of	Lectures=		
Unit		Topic		No. of lectures	
1.	Bioenerge	tics and ATP Cycle			
	DNA poly	monization alugado sta	mana matal complexes		
		merization, glucose sto ssion of energy chlorop			
		system II in cleavage of			
2.	Transport	and Storage of Dioxyg	ren		
۷.	1	8 75	,		
		oteins and oxygen uptal			
	functioin of haemoglobin, nyoglohin, haemocyanins hemerythrin, model synthetic complexes of ion, cobalt				
and copper			nplexes of lon, cobalt		
and copper.					
3.	Nitrogenase				
	Biologica	l nitrogen fixation, m	olvbdenum		
		se, spectroscopic and			
		ogenases model syste			
4.	Metalloenzymes				
Zinc enzyme-carboxypetidase and carbonic anhydrase. Iron enzymes-catalase, peroxidase					
		e. Iron enzymes-catala ne P-450. Copper enz			
dismutase		11 .	yme superoxide		
	v	um oxatransferase en	1 oxidase.Co enzyme		
vitamin B12					

5.	Electron Transfer in Biology Structure and function of metallo proteins in electron transport processes-cytochromes and ion- sulphur proteins, synthetic models	
6.	Metals in Medicines: Metal deficiency and disease, toxic effects of metals, metals used for diagnosis and chemotherapy with particular reference to anti-cancer drugs.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	

Course prerequisites: To study this course, a student must have had the chemistry in B.Sc. (Bachelor of Science)

Suggested equivalent online courses:

Further suggestion

CHEMISTRY PRACTICAL

PROGRAMME/	CLASS:	YEAR- SECOND		SEMESTER:
MASTER OF SCI	ENCE			THIRD
PRACTICAL-OF	RGANIC			CHEMISTRY
COURSE CODE	: B020905P		COURSE TITLE: OF	RGANIC
			PRACTICAL	
Credits:				Core
				compulsory
Max. marks:			Min passing marks	5:
		Total no. of Lecture	es=	
Unit		Topic		No. of
				lectures
1.				
	+	Qualitative Analysis		
	C			
		ation, purification and ic		
	-	onents of a mixture of the	0	
compounds (three solids or two liquids and one solid, two solids and one liquid), using tic for				
		ng the purity of the sep		
chemical analysis, IR, PMR and mass spe data.		nu mass speetral		
	Gata.			
2.	📥 Paper	Chromatography		
	Separation and identification of the sugars present		of the sugars present	
	in the given mixture of glucose, fructose and			
	sucrose by paper chromatography and			
		ination of Rf values.		
3.	4 Spectr	oscopy		
		ication of organic comp		
	of their	r spectral data (UV, IR,	PMR, CMR & MS)	

📥 Spectrophotometric (UV/VIS) Estimations	
Amino acids	
Proteins	
Carbohydrates	
Cholesterol	
Ascorbic acid	
• Aspirin	
Caffeine	
4 Quantitative Analysis	
• Determination of the percentage or number of hydroxyl groups in an organic compound by acetylation method	
• Determination of DO_COD and	
Estimation of three component mixture of cations like Cu, Ni, Zn or Cu, Ni, My or Ag, Cu, Ni or Cu, Ag, In or Ag, Ni, Zn or Ag, Ni, Me or Fo, Ni, Zupor analysis of solder and type metal (Pb, sb,\$n), analysis of silver coin for (Ag Cu, Ni) etc. involving volumetric and gravemetic method	
Spectrophotometric Determinations	
(a) Manganese/Chromium/Vanadium in steel sample	
(b) Nickel/molybdenum/tungsten/vanadium/uranium by extractive spectrophotometric method.	
(c) Fluoride/nitrite/phosphate	
(d) Iron-phenanthroline complex: Job's Method of continuous variations.	
(e) Zirconium-Alizarin Red-S complex: Mole-ratio method.	
(f) Copper-Ethylene diamine complex: Slope-ratio method.	
	 Amino acids Proteins Carbohydrates Cholesterol Ascorbic acid Aspirin Caffeine Quantitative Analysis Determination of the percentage or number of hydroxyl groups in an organic compound by acetylation method Determination of DO, COD and BOD of water sample Estimation of three component mixture of cations like CU, Ni, Zn or CU, Ni, My or Ag, CU, Ni or CU, Ag, In or Ag, Ni, Me or Fo, Ni, Zupor analysis of solder and type metal (Pb, sb,1), analysis of silver coin for (Ag CU, Ni) etc. involving volumetric and gravemetic method Spectrophotometric Determinations (a) Manganese/Chromium/Vanadium in steel sample (b) Nickel/molybdenum/tungsten/vanadium/uranium by extractive spectrophotometric method. (c) Fluoride/nitrite/phosphate (d) Iron-phenanthroline complex: Job's Method of continuous variations. (e) Zirconium-Alizarin Red-S complex: Mole-ratio method. (f) Copper-Ethylene diamine complex: Slope-ratio

8.	4 Flame Photometric Determinations
	(a) Sodium and potassium when present together(b) Lithium/calcium/barium/strontium(c) Cadmium and magnesium in tap water.
9.	4 Nephelometric determinations
	(a) Sulphate
	(b) Phosphate
	(c) Silver

This course can be opted as an elective by the students of following subjects: Chemistry in B.Sc. (Bachelor of Science)

Suggested Continuous Evaluation Methods:

Viva voce	(10 marks)
Mock test	(10 marks)
Overall performance	(05marks)

Course prerequisites: To study this course, a student must have had the chemistry in B.Sc. (Bachelor of Science)

Suggested equivalent online courses:

Further suggestion

CHEMISTRY PROJECT

PROGRAMME/CLASS:	YEAR- SECOND		SEMESTER:
MASTER OF SCIENCE			THIRD
SUBJEC	CT: CHEMISTRY		
COURSE CODE: B020906	R	COURSE TITLE: PROJECT/ INDUSTRIAL TRAINING / INTERNSHIP	
Semester III & IV of Master project/dissertation is to el- aspects of some targeted are and will provide them an ap them to execute research in Course Outcome: 1. studen implement it within a reaso	evate their understa eas of chemistry. Th ot exposure to work the area of their int nts will be able to pl nable time frame.	nding into the practical is course will develop th in any research group a cerest in chemical science an and strategize a scien	and experimental heir analytical ability and will motivate ces. ntific problem, and
2. It is expected that after completing this project dissertation, students will learn to work independently and how to keep accurate/readable record of assigned project.3. In addition, students will be able to know the library search and handle the data in a meaningful way			
4. Also, students will be able to interpret the spectral data independently. 5. Subsequently, the students should be able to critically examine research articles, and improve their scientific writing/communication skills and power point presentation.			
serence writenig, commun	cation shins and pot		
Credits:			Core compulsory
For project work and dissertation, the area of the work would be to be decided by the advisor/mentor. On completion of the project work, students have to submit the work in the form of a dissertation followed by oral presentation in the presence of faculty members and external expert in semester IV			

PAPER – 1(THEORY)

COURSE TITLE: SPECTROSCOPY-II

PROGRAMME/CLASS:		YEAR- SECOND		SEMESTER:
MASTER OF SCIENCE				fourth
PAPER-1			SUBJE	ECT: CHEMISTRY
COURSE CODE	: B020001T		COURSE TITLE: SPE	CCTROSCOPY-II
Credits:				Core compulsory
Max. marks:			Min passing mar	rks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	Magneti	c Resonance Spect	croscopy:	
	Nuclear	Magnetic Resonar	ice Spectroscopy	
		spin, nuclear resona		
		6	clinical shift and its	
			ncing chemical shift	
		ng, spin-spin intera		
		ncing coupling constant J. Classification		
		AMX, ABC, A,B, etc.) spin decoupling FT advantages of FT NMR. Chemical		
		advantages of FT WWR. Chennear		
	0	ction between two, three, four and five nuclei		
		order spectra), virtual coupling.		
	``	- /	ectra- magnetic double	
	-		ents, solvent effects.	
			, nuclear Overhauser	
			ry Lindered rotation,	
	Karplus	us curve-variation of coupling constant with		
	Dihedral			
2.	Carbon-	Don-13 NMR Spectroscopy:		
			nical shift (aliphatic,	
		alkyne, aromatic, lic		
	carbonyl carbon), coupling constants.			

3.	Mass Spectrometry:	
	Introduction, ion production - El, Cl, FD and FAB, factors affecting fragmentation, ion analysis, ion abundance, Mass spectral fragmentation of organic compounds, common functional groups, molecular ion peak, metastable peak, McLafferty rearrangement. Nitrogen rule. High resolution mass spectrometery. Examples of mass spectral fragmentation of organic compounds with respect to their structure determination.	
4.	Electron Spin Resonance Spectroscopy:	
	Basic principles, zero field splitting and Kramer's degeneracy, factors affecting the value, isotropic and anisotropic hyperfine coupling constants, spin Hamiltonian, spin densities and McConnell relationship, measurement techniques, applications	
5.	Photo Electron Spectroscopy:	
	Basic principle, photo electric effect, ionization process, Koopman's theorem, Photoelectron Spectra of simple molecule, ESCA, Chemical information from ESCA Auger electron spectroscopy-basic idea	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 2(THEORY)

COURSE TITLE: Organo Transition Metal chemistry

PROGRAMME/CLASS:		YEAR-SECOND		SEMESTER:
MASTER OF SCIENCE				fourth
PAPER-2			SUBJE	CT:CHEMISTRY
COURSE CODE	: B020002T	-	COURSE TITLE: Org	gano Transition
			Metal chemistry	
Credits:				Core compulsory
Max. marks:			Min passing ma	rks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	Fluxiona	l Organometallic co	mpounds:	
	Fluxiona	lity and dynamic eq	uilibria in compounds	
	such as e	s-ally and all dienyl	compexesallyl and •	
	$32^2 = \text{olet}$	fin		
2. Metal carbonyl and nitrosyl compounds:		yl compounds:		
	Structural aspects of metal carbonyls, vibrational			
	spectra for the structural diagnosis, Force			
	constants and bonding, Preparations, Properties			
	and structure of some metal nitrosyls, Substitution			
		using donor, donor	•	
	hydrocarbonyls and metal carbides			
3.	Homogeneous catalytic reactions: Coordinative			
	unsatura	tion, Acid-Base beha	aviour of metal atoms	
	in complexes. Insertion reaction, Reactions of co-			
	ordinated ligands, catalytic reactions of alkenes,			
	Hydrogenation of alkenes, hydrofonylation of			
	alkenes. Alkene polymerization & oligomerization,		-	
	Fischer- Tropsch process. Reactions involving		-	
		r oxygen. Fluxional	6	
		• =	icker process (Smidt	
oxopalladation reaction, activation of C-H bond.				

4.	Complexes with T-bonding ligands:	
	 (a) arene complexes of the transition metals, origin of bis-arene concept bis-arene complexes of Cr & Fe, mixed arene & arene metal carbonyl compounds. 	
	(b) Compounds of Transition metals and Carbon- Multiple bonds: Alkylidenes, alkylidynes, low valent Carbenes and Carbynes-Synthesis, nature of bond, structural characteristics, nucleophilic and electrophilic reaction on the ligand.	
	(c) Cyclopentadienyl metal compounds of Fe. Structure & bonding of cyclopentadienyl metal compounds.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	

Course prerequisites: To study this course, a student must have had the chemistry in B.Sc. (Bachelor of Science)

Suggested equivalent online courses:

Further suggestion

PAPER – 3(A)(THEORY)

COURSE TITLE: (Photo inorganic Chemistry)

PROGRAMME/CLASS:		YEAR- SECOND		SEMESTER:	
MASTER OF SCIENCE				fourth	
PAPER-3(A)			SUBJECT:CHEMIS		
COURSE CODE	: B020003T	(A) COURSE TITLE: (Ph		Photo inorganic	
		Chemistry)		-	
Credits:		OPTIONAL SUBJ		OPTIONAL SUBJECT	
Max. marks:		Min passing marks:			
		Total no. of	Lectures=		
Unit		Topic		No. of lectures	
1.	Basics of	f Photochemistry:	f Photochemistry: Absorption,		
	excitatio	n, photochemical lav	n, photochemical laws, quantum yield,		
	electroni	cally excited states,			
	measure	ments of the times. I			
	stopped f	low techniques. Energy dissipation by			
	radiative	and non-radiative processes absorption			
	spectra, l	Franck-Condon principle, photochemical			
	stages-primary and secondary processes				
2.	Properties of Excited States: Structure dipole				
	moment,	acid base strengths	, reactivity. Photo		
	chemical	kinetics-calculation	of rates of radiative		
	process.	Bi molecular deactiv			
3.		States of Metal co	A		
		Metal complexes: - Comparison with			
organic compounds electron					
Metal complexes, charge transfer spectra, charge					
		excitations, methods for obtaining charge			
	transfer s	spectra.			
1					

4.	Ligand Field Photochemistry: Photo substitution, photo oxidation, lability and selectivity, Zero vibrational levels of ground states and excited states, energy content of excited state, Zero-zero spectroscopic energy, development of equation for redox potentials of the excited states	
5.	Redox Reactions by Excited Metal Complexes: Energy transfer under conditions of weak interaction and strong interactions-exciplex formation, conditions of the excited states to be useful as redox reactants, exited electron transfer metal complexes as attractive candidates (2,2-bi pyridine and 1,10phenonthroline complexes). illustration of reducing and oxidizing character of Ruthenium2+ (bipyridil complex, comparison with Fetbipy); role of spin-orbit coupling-life time of these complexes. Application of redox processes of electronically excited states for catalytic purposes, transformations of low energy reactants into high energy products, chemical energy into light.	
6.	Metal Complex sensitizers: Metal Complex sensitizers, electron relay, metal colloid systems, semi-conductors Supported metal oxide systems, water photolysis, nitrogen fixation and CO, reduction.	

Assessment and presentation of	(10 marks)	
Assignment		
04 tests (Objective): Max marks of each	(10 marks)	
test = 10		
(average of all 04 tests)		
Overall performance throughout the	(05 marks)	
semester. Discipline. participation in		
different activities)		
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.	
(Bachelor of Science)		
Suggested equivalent online courses:		
Further suggestion		

PAPER – 3(B)(THEORY)

COURSE TITLE: (Organic Synthesis-II)

PROGRAMME/CLASS:		YEAR- SECOND		SEMESTER: fourth			
MASTER OF SCIENCE							
PAPER-3(B)							
SUBJECT:CHEMISTRY							
COURSE CODE	: B020003T	(B) C	COURSE TITLE:	: (Organic Synthesis-			
		I	(I)				
Credits:				OPTIONAL SUBJECT			
Max. marks:		Min passing marks:		; marks:			
		Total no. of Lec	tures=				
Unit		Topic		No. of lectures			
1.	Disconn	ection Approach:					
		duction to synthons, I					
		, functional group inter conversions					
		group C-X and two group C-X					
	Disconnections.						
	D ()	0					
2.	Protecti	ng Groups:					
	р· · 1						
	-	e of protection of alcoh					
	carbonyl and carboxyl groups.						
3.	One group C-C Disconnections:						
0.							
	Alcohol a						
	synthesis	and carbonyl compounds, alkene s.					
		-					

4.	Two group C-C Disconnections: Diels alder reaction, Micheal addition and Robinson annelation, 1, 3 difunctionalised and 1,5 difunctionalised compounds.	
5.	Ring synthesis: Saturated heterocycles (Piperidine, oxetanc, THF, only) aromaticheterocycles (3, 4, 5 and 6 membered rings) for example Aziridine, Pyrrole, Oxetene, Thiazole and Pyridine.	
6.	Synthesis of some complex molecules: Application of above in the synthesis of following. Camphor, Reserpine and Vitamin D.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 3(C)(THEORY)

COURSE TITLE: (Advanced Quantum Chemistry)

PROGRAMME/CLASS: MASTER OF SCIENCE		YEAR- SECOND		SEMESTER: fourth
PAPER-3(B)			SUB	JECT:CHEMISTRY
	DDE: B020003T	(C)	COURSE TITLE: (Advance Chemistry)	ed Quantum
Credits:				OPTINAL SUBJECT
Max. marks:			Min passing ma	arks:
			no. of Lectures=	-
Unit		Topic		No. of lectures
2.	Review of Treatme rotor. Bo Condon : Ab inition Calculat Roothaan on negle	es of Quantum Mechanics: of the principles of quantum mechanics, nt of H-atom, harmonic oscillator, Rigid orn-Oppenheimer Approximation, Slater- rules, Theory of angular momentum o and Semi-empirical SCE-MO ions for Closed Shell System: n-Hartree-Fock method. Methods based ct of differential overlap.		
3.	MOT of Heterony molecule bond ord Applicat radical, c	ar Orbital Theory: H2, MO treatment of HOMO and uclear diatomics, Shapes of triatomic es. Huckle theory of conjugated system, ler and charge density calculations, ions of ethylene, butadines, cyclopropenyl cyclobutadiene etc. Introduction to I Huckel theory.		

4.	Time dependent pertutation theory-radiative transition, Einstein Coefficient. Introduction to the methods of self-consistent fields.
----	--

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	· ·
Suggested equivalent online courses:	
Further suggestion	

PAPER – 4(A)(THEORY)

COURSE TITLE: (Analytical Chemistry-II)

PROGRAMME/CLASS:		YEAR- SECOND		SEMESTER: fourth
MASTER OF SCIENCE				
PAPER-4(A)				JECT:CHEMISTRY
COURSE CODE	: B020004T	(A)	COURSE TITLE: (Ana	č ,
Credits:				OPTIONAL SUBJECT
Max. marks:			Min passing m	narks:
		Total no.	of Lectures=	1
Unit	T	Topic		No. of lectures
1.	Food An	alysis:		
			ein, fat, crude fiber,	
	•	-	otassium, sodium and	
		te. Food adultera	mination of food stuffs.	
		pic examination		
		-	lysis in food products.	
			n of sample. HPLC. Gas	
		ography for organophosphates. Thin-		
		romatography for identification of		
		ed pesticides in f		
		of Water Pollu		
		ectives of analysis-parameter for analysis-		
		e	ids, conductivity,	
	v	v	ss, chloride, sulphate,	
			s and different forms of	
	0	. General survey		
	-	v	of heavy metals in	
aqueous systems. Pesticides as water pollutants				
3		analysis. Water pollution Standards. Ilysis of Soil, Fuel, Body Fluids and Drugs:		
3.	² 111 a1 y 51 5	or son, r aci, bouy rialus and Drugs.		
soil: (a) Analysis of solids; moisture, pH total		s: moisture, pH total		
		•	ca, lime, magnesia,	
		ese, Sulphur and	-	
	0	· 1		

(b) Fuel' analysis: solid, liquid and gas. Ultimate and proximate analysis-heating values grading of coal. Liquid fuels-flash point, aniline point, octane number and carbon residue. Gaseous fuels producer gas and water gas-calorific value.	
(c) Clinical chemistry: Composition of blood- collection and preservation of samples. Clinical analysis. Serum electrolytes, blood glucose, blood urea, nitrogen, uric acid, albumin, globulins, barbiturates, acid & alkaline phosphatases. Immunoassay principles of radio immunoassay (RIA) & applications. The blood gas analysis trace element in the body.	
(d) Drug analysis: Narcotics & dangerous drugs. Classification of drugs screening by gas and thin layer chromatography and spectrophotometric measurement.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 4(B)(THEORY)

COURSE TITLE: (Heterocyclic Chemistry)

PROGRAMME/CLASS:		YEAR- SECOND		SEMESTER: fourth
MASTER OF SCIENCE				
	_			
PAPER-4(B)		1	SUI	BJECT:CHEMISTRY
COURSE CODE	: B0200041	-(B)	COURSE TITLE: (+	leterocyclic Chemistry)
Credits:				OPTIONAL SUBJECT
Max. marks:			Min passing m	narks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	Nomenc	lature of Heterocy	cles:	
		nent and systematic		
	•	- ,	for monocyclic fused	
	and brid	ged heterocycles		
2	Hotopoo	volio Synthosis.		
2.	Heteroc	yclic Synthesis:		
	Principle	es of heterocyclic syr	nthesis involving	
			loaddition reactions	
Cyclization (on reactions and eye		
3.	Small R	ing Heterocycles:		
		embered and four-m		
	heterocycles-synthesis and reactions of			
aziridines,				
	azetidine	es, oxetanes.		
4.	Benzo-F	used Five-Member	red Heterocycles:	
-т.		Fused Five-Membered Heterocycles:		
	Svnthesi	is and reactions including medicinal		
ę		ons of benzopyrrole	8	
		ophenes.	,	
		1		

5.	Six-Membered Heterocycles with one	
	heteroatom:	
	One Heteroatom	
	Synthesis and reactions of pyrylium salts and pyrones and their comparison with pyridinium & thiopyrylium salts and pyridones.	
	Synthesis and reactions of quinolizinium and benzopyrylium salts, coumarins and chromones.	
6.	Six-Membered Heterocycles with Two or More Heteroatoms : Synthesis and reactions of diazines, triazines and thiazines.	
7.	Mesoionic Heterocycles:	
	General classification, chemistry of some important mesoionic heterocycles of type A & typeB & their application	
8.	Seven & Large Membered Heterocycles:	
	Synthesis and reaction of azepines, oxepines, Thiepines and diazepines.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 4(C)(THEORY)

COURSE TITLE: (Enzyme Chemistry)

PROGRAMME/CLASS:		YEAR- SECOND	SEMESTER: fourth
MASTER OF SCIENCE			
PAPER-4(C)			SUBJECT:CHEMISTRY
COURSE CODE	: B020004T	(C) COURSE T	ITLE: (Enzyme Chemistry)
Credits:			OPTIONAL SUBJECT
Max. marks:			assing marks:
		Total no. of Lectures=	
Unit	1	Topic	No. of lectures
1.		uction: Basic consideration, Pro	ximity
	effects an	d molecular adaptation.	
2.	Enzymes	: Introduction and historical	
2.		ve, chemical and biological cataly	vsis
		ble properties of enzymes like cat	
		pecificity and regulation. Nomenc	
		ification, extraction and purificat	
	Fischer's lock and key and Koshland's induced fil		
	hypothes	is, concept and identification of a	ctive
	site by th	e use of inhibitors, affinity labeling	ng and
		nodification by site-directed	
	0	esis. Enzyme kinetics. Michaelis-	
		nd Lineweaver Burk plots, rever	sible
		ersible inhibition	
3.	Mechanism of Enzyme Action : Transition-		
		ory, orientation and steric effect,	
		lysis, covalent catalysis, strain or	
		n, Example of some typical enzym	
		m for chymotrypsin, ribonucleas and carboxypeptidase A.	e,
	1yS0ZyIII	and carboxypepticase A.	

4.	Kinds of Reactions Catalysed by Enzymes: Nucleophilic displacement on phosphorus atom, multi displacement reactions and the coupling of ATP cleavage to endergonic processes. Addition and elimination reactions, enolic intermediates in isomerization reaction, some isomerization and rearrangement reactions. Enzyme catalyzed	
5.	carboxylation and decarboxylation. Co-enzyme chemistry: Cofactor as derived from vitamins, coenzymes, prosthetic groups, apoenzymes. Structure and biological function of coenzyme ANDA, NADP, FAD, vitamin B12 Mechanisms of reactions catalyzed by the above cofactors.	
6.	Enzyme Model: Host-guest chemistry, chiral recognition and catalysis, molecular recognition, molecular asymmetry and prochirality. Biomimetic chemistry, crown ethers, cryptates. Cyclodextrins, cyclodextrin-based enzyme models, calixarenes, ionophores, micelles, synthetic enzymes or synzymes	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 4(D)(THEORY)

COURSE TITLE: (Statistical Thermodynamics)

PROGRAMME/	CLASS:	YEAR- SECOND		SEMESTER:
MASTER OF SCIENCE				fourth
PAPER-4(D)			SUBJEC	T: CHEMISTRY
COURSE CODE	: B020004T	(D)	COURSE TITLE: (S	tatistical
			Thermodynamics)	
Credits:				OPTIONAL
			N.4' '	SUBJECT
Max. marks:			Min passing m	iarks:
T T • (Total no. of L	ectures=	
Unit	.	Topic		No. of lectures
1.	Review of	of Basic Statistical	Mechanics:	
		ace, Ensembles, Equal a priori		
	1	ty, Microcanonical e		
		e & Grand Canonica		
	Probability and most probable distribution.			
			ing's approximation.	
		evels. Entropy & thi	ird law of	
	thermody	/		
2.	Distribu	tion law:		
	(1) Boltz	mann distribution la	w: Molecular	
	partition	functions for non-ir	nteracting particles,	
	relation of	of partition function	to thermodynamic	
	functions	s (H,U,G,S,A) & equ	ilibrium constant.	
	(ii) Ferm	i-Dirac statistics: El	ectrons in metals.	
	(iii) Bose	-Einstein statistics;	Application to	
	Helium.			

3.	Determination (Evaluation) of partition	
	function:	
	Localized & non-localised particles, seperation of partition function, Review of rotational, vibrational, translational & electronic partition functions. The Sackur-Tetrode equation. Derivation of thermodynamic properties of ideal gases from partition function.	
4.	Statistics Mechanics of Crystals:	
	Heat capacity of Solids, The Einstein's theory, The Debye theory.	
5.	Statistical of Non-equilibrium States:	
	Boltzmann transport equation. Electrical conductivity.	
6.	Statistical mechanics to liquids:	
	Radial distribution functions. Distribution function for classical monoatomic fluids.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	
Suggested equivalent online courses:	
Further suggestion	

PAPER – 4(E)(THEORY)

COURSE TITLE: (Chemistry of Materials)

PROGRAMME/CLASS: MASTER OF SCIENCE		YEAR- SECOND		SEMESTER: fourth
PAPER-4(E)			SUI	JECT:CHEMISTRY
COURSE CODE	• B020004T	-(F)	COURSE TITLE: (C	
Credits:	. 002000+1			OPTIONAL SUBJECT
Max. marks:			Min passing m	arks:
		Total no. of		
Unit	1	Topic		No. of lectures
1.	Multiph	ase Materials:		
	ferrous a propertie	alloys; Fe-C phase t lloys; stainless steel es of ferrous and nor llications.		
2.	Ceramics, Composites and Nanomaterials:			
	Ceramic structures, mechanical properties, clay product, Refractories characterization, properties and applications, Microscopic composites; dispersion-strengthened and particle-reinforced, fibre- reinforced Composites, macroscopic composites, Nanocrystalline phase, preparation procedures, special properties, applications.			
3.	Thin Films and Langmuir-blodgett Films:			
Preparation techniques; evaporation sputtering, chemical Processes, MOCVD, Langmuir- and blodgett (LB) Film, growth techniques, properties and applications of thin, LB film.				

4.	Polymeric Materials:	
	Molecular shape, structure and configuration, crystallinity, stress-strain behaviour, polymer types and their applications, conducting and ferro-electric polymers.	
5.	Ionic Conductors:	
	Types of ionic conductors, mechanism of ionic conduction, interstitial jumps (Frenkel); Vacancy mechanism, diffusion super ionic conductors.	
6.	High Tc Materials:	
	Defects perovskites, high Tc superconductivity in cuprates, normal state properties; anisotropy, temperature dependence of electrical resistance.	

Assessment and presentation of	(10 marks)
Assignment	
04 tests (Objective): Max marks of each	(10 marks)
test = 10	
(average of all 04 tests)	
Overall performance throughout the	(05 marks)
semester. Discipline. participation in	
different activities)	
Course prerequisites: To study this course	e, a student must have had the chemistry in B.Sc.
(Bachelor of Science)	·
Suggested equivalent online courses:	
Further suggestion	

PAPER - 4(F)(THEORY)

COURSE TITLE: Environmental Chemistry

PROGRAMME/ MASTER OF SC		YEAR- SECOND		SEMESTER: fourth
PAPER-4(F)		I	SUI	BJECT:CHEMISTRY
COURSE CODE	: B020004T	-(F)	COURSE TITLE: E	nvironmental Chemistry
Credits:				OPTIONAL SUBJECT
Max. marks:			Min passing n	narks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
2.	ENVIRONMENTBiogeochemical cycles of C, NHydrosphere:Aquatic pollution inorganic, oagricultural, industrial and seoil spills and oil pollutants. Wparameters dissolved oxygen,oxygen demand, solids, metalchloride, sulphate, phosphate,organism. Water quality stanmethods of measuring BaD, IMetals (As, Cd, Cr, Hg, Pb, Schloride and chlorine demandtreatments of water.		organic, pesticides, ewage, detergents, Water quality n, biochemical Ils, content of e, nitrate and micro- ndards. Analytical DO, COD, F, Oils, Se etc.), residual	
2.	Soils: Pollution fertilizers, pesticides, plastics and metals. Waste treatment.			

3.	Atmosphere:	
	Chemical composition of atmosphere particles, ions. and radicals and their formation. Chemical and photochemical reactions in atmosphere, smog formation, oxides of N, C, S, and deir effect, pollution by chemicals, petroleum, minerals: chlorofluorohydrocarbons	
	Greenhouse effect, acid rain, air pollution controls and their chemistry.	
	Analytical methods 'for measuring air pollutants. Continuous monitoring instruments.	
4.	Industrial Pollution:	
	Cement, Sugar, distillery, drug, paper and pulp, thermal power plants, nuclear power plants, metallurgy. Polymers, drug etc. Radionuclide analysis. Disposal of wastes and their management.	
5.	Environmental Toxicology:	
	Chemical solutions to environmental problems, biodegradability, principles of decomposition, better industrial processes. Bhopal gas tragedy, hemobyl, Three-mile island. Sewozo and Minamata disasters	

CHEMISTRY PRACTICAL

PROGRAMME/ MASTER OF SCI		YEAR- SECOND		SEMESTER: FOURTH
Practical-2(ORGA	ANIC)		SUBJ	JECT:CHEMISTRY
COURSE CODE	: B020005	δP	COURSE TITLE: PR	ACTICAL
Credits:				Core compulsory
Max. marks:			Min passing mar	·ks:
		Total no. of	Lectures=	
Unit		Topic		No. of lectures
1.	Threa pro Ph Be Be Be Be Be Sy Sk an ph Er Re to	eckmann rearrangement nzene Benzene $\rightarrow \rightarrow$ Be enzophenone oxime $\rightarrow -$ enzilic acid rearrangeme nzoin enzoin \rightarrow Benzil $\rightarrow \rightarrow$ B enthesis of heterocyclic of traup synthesis: Prepara iline Fisher -Indole syn enylindole from phenyl nzymatic synthesis Enzy eduction of ethyl acetoao yield enantiomeric exce	trate the use of organic purification of the phic techniques nacol →→Benzpinacolone :: Benzanilide from nzophenone → → Benzanilide ent: Benzilic acid from enzilic acid compounds tion of quinoline from thesis: Preparation of 2- hydrazine. ymatic reduction:. cetate using Bakers yeast	
	Bie	osynthesis of ethanol fro	om sucrose	
	Sy	nthesis using microwav	'es	

	Alkylation of diethyl malonate with benzyl chloride.	
	Synthesis using phase transfer catalyst	
	Alkylation of diethyl malonate or ethyl acetoacetate with an alkyl halide	
2.	Extraction of Organic Compounds from Natural Sources.	
	1.Isolation of caffeine from tea leaves.	
	 2. Isolation of casein from milk (the students are required to try some typical colour reactions of proteins). 3. Isolation of lactose from milk (purity of sugar should be checked by TLC and PC and Rf value reported). 	
	4. Isolation of nicotine dipicrate from tobacco.	
	5. Isolation of cinchonine from cinchona bark. 6. Isolation of piperine from black pepper.	
	7. Isolation of lycopene from tomatoes. 8. Isolation of B-carotene from carrots.	
	9. Isolation of oleic acid from olive oil (involving the preparation of complex with urea and separation of linoleic acid).	
	10. Isolation of eugenol from cloves.	
	11. Isolation of (+) limonine from citrus rinds	
3.	Estimation of three component mixture of cations like Cu, Ni, Zn or Cu, Ni, My or Ag, Cu, Ni or Cu, Ag, In or Ag, Ni, Zn or Ag, Ni, Me or Fo, Ni, Zupor analysis of solder and type metal (Pb, sb,\$n), analysis of silver coin for (Ag Cu, Ni) etc. involving volumetric and gravemetic methods.	

4.	Spectrophotometric Determinations
	(a) Manganese/Chromium/Vanadium in steel sample
	(b)Nickel/molybdenum/tungston/vanadium/uraniumby extractive spectrophotometric method.
	spectrophotometric
	(c) Fluoride/nitrite/phosphate
	(d) Iron-phenanthroline complex: Job's Method of continuous variations.
	(e) Zirconium-Alizarin Red-S complex: Mole-ratio method.
	(f) Copper-Ethylene diamine complex: Slope-ratio method.
5.	Flame Photometric Determinations
	(a) Sodium and potassium when present together
	(b) Lithium/calcium/barium/strontium
	(c) Cadmium and magnesium in tap water.
6.	Nephelometric determinations
	(a) Sulphate
	(b) Phosphate
	(c) Silver

This course can be opted as an elective by the students of following subjects: Chemistry in B.Sc. (Bachelor of Science)

Suggested Continuous Evaluation Methods:					
Viva voce	(10 marks)				
Mock test	(10 marks)				
Overall performance	(05marks)				
Course prerequisites: To study this course, a student must have had the chemistry in B.Sc. (Bachelor of Science)					
Suggested equivalent online courses:					
Further suggestion					

CHEMISTRY PROJECT

	VEAD CECOND		CEMECTED				
PROGRAMME/CLASS:	YEAR- SECOND		SEMESTER:				
MASTER OF SCIENCE			FOURTH				
Project. SUBJECT: CHEMISTRY							
COURSE CODE: B020006R COURSE TITLE: PROJECT							
Semester III & IV of Masters the main objective of the exposure of students towards							
project/dissertation is to elevate their understanding into the practical and experimental							
aspects of some targeted areas of chemistry. This course will develop their analytical ability							
and will provide them an apt exposure to work in any research group and will motivate							
them to execute research in the area of their interest in chemical sciences.							
them to execute research in the area of their interest in chemical sciences.							
Course Outcome:							
1. students will be able to plan and strategize a scientific problem, and implement it within a							
reasonable time frame.							
2. It is expected that after completing this project dissertation, students will learn to work							
independently and how to keep accurate/readable record of assigned project.							
independentity and now to heep accurate, readable record of absigned project.							
3. In addition, students will be able to know the library search and handle the data in a							
meaningful way							
4. Also, students will be able to interpret the spectral data independently.							
5. Subsequently, the students should be able to critically examine research articles, and							
improve their scientific writing/communication skills and power point presentation.							
Credits:			Core compulsory				
			y				
For project work and dissertation, the area of the work would be to be decided by the							
advisor/mentor. On completion of the project work, students have to submit the work in the							
1 10							
form of a dissertation followed by oral presentation in the presence of faculty members and							

external expert in semester IV.