Shri Agrasen Kanya P.G. College Varanasi

(An Autonomous College)

Syllabus of the Subject

Physics

For First Three Years of Under-Graduate (UG) Programme

As per guidelines of Common Minimum Syllabus prepared by Department of Higher Education, Uttar Pradesh Government according to the National Education Policy- 2020 (NEP-2020).

w.e.f. the Session 2021-2022)

{Page 1 of 48}

UG Physics Syllabus

	SEMESTER-WISE TITLES OF THE PAPERS IN UG PHYSICS COURSE						
YEAR	SEME- STER	COURSE CODE	PAPER TITLE	THEORY / PRACTICAL	CREDIT		
	CERTIFICATE -IN BASIC PHYSICS & SEMICONDUCTOR DEVICES						
	I	B010101T	Mathematical Physics & Newtonian Mechanics	Theory	4		
FIRST YEAR	1	B010102P	Mechanical Properties of Matter	Practical	2		
FIRST YEAR	II	B010201T	Thermal Physics & Semiconductor Devices	Theory	4		
	11	B010202P	Thermal Properties of Matter & Electronic Circuits	Practical	2		
		DIPLO	MA - IN APPLIED PHYSICS WITH ELECTRON	ICS			
	III	B010301T	Electromagnetic Theory & Modern Optics	Theory	4		
ECONI YEAR		B010302P	Demonstrative Aspects of Electricity & Magnetism	Practical	2		
SECOND YEAR	IV	B010401T	Perspectives of Modern Physics & Basic Electronics	Theory	4		
\mathbf{z}		B010402P	Basic Electronics Instrumentation	Practical	2		
	•		DEGREE -IN BACHELOR OF SCIENCE				
		B010501T	Classical & Statistical Mechanics	Theory	4		
_	V	B010502T	Quantum Mechanics & Spectroscopy	Theory	4		
RD AR		B010503P	Demonstrative Aspects of Optics & Lasers	Practical	2		
THIRD YEAR		B010601T	Solid State & Nuclear Physics	Theory	4		
	VI	B010602T	Analog & Digital Principles & Applications	Theory	4		
		B010603P	Analog & Digital Circuits	Practical	2		

SUBJECT PREREQUISITES

To study this subject, a student must have had the subjects **Physics & Mathematics** in class 12th.

PROGRAMME OUTCOMES (POs)

The practical value of science for productivity, for raising the standard of living of the people is surely recognized. Science as a power, which provides tools for effective action for the benefit of mankind or for conquering the forces of Nature or for developing resources, is surely highlighted everywhere. Besides the utilitarian aspect, the value of Science, lies in the fun called intellectual enjoyment. Science teaches the value of rational thought as well as importance of freedom of thought.

Our teaching so far has been aimed more at formal knowledge and understanding instead of training and application oriented. Presently, the emphasis is more on training, application and to some extent on appreciation, the fostering in the pupils of independent thinking and creativity. Surely, teaching has to be more objective based. The process of application based training, whether we call it a thrill or ability, is to be emphasized as much as the content.

Physics is a basic science; it attempts to explain the natural phenomenon in as simple a manner as possible. It is an intellectual activity aimed at interpreting the Multiverse. The starting point of all physics lies in experience. Experiment, whether done outside or in the laboratory, is an important ingredient of learning physics and hence the present programme integrates six experimental physics papers focusing on various aspects of modern technology based equipments. With all the limitations imposed (even the list of experiments as given in the syllabus) if the spirit of discovery by investigation is kept in mind, much of the thrill can be experienced.

- 1. The main aim of this programme is to help cultivate the love for Nature and its manifestations, to transmit the methods of science (the contents are only the means) to observe things around, to generalize, to do intelligent guessing, to formulate a theory & model, and at the same time, to hold an element of doubt and thereby to hope to modify it in terms of future experience and thus to practice a pragmatic outlook.
- 2. The programme intends to nurture the proficiency in functional areas of Physics, which is in line with the international standards, aimed at realizing the goals towards skilled India.
- 3. Keeping the application oriented training in mind; this programme aims to give students the competence in the methods and techniques of theoretical, experimental and computational aspects of Physics so as to achieve an overall understanding of the subject for holistic development. This will cultivate in specific application oriented training leading to their goals of employment.
- 4. The Bachelor's Project (Industrial Training / Survey / Dissertation) is intended to give an essence of research work for excellence in explicit areas. It integrates with specific job requirements / opportunities and provides a foundation for Bachelor (Research) Programmes.

PROGRAMME SPECIFIC OUTCOMES (PSOs)

CERTIFICATE

IN BASIC PHYSICS & SEMICONDUCTOR DEVICES

FIRST YEAR

This programme aims to give students the competence in the methods and techniques of calculations using Newtonian Mechanics and Thermodynamics. At the end of the course the students are expected to have hands on experience in modeling, implementation and calculation of physical quantities of relevance.

An introduction to the field of Circuit Fundamentals and Basic Electronics which deals with the physics and technology of semiconductor devices is practically useful and gives the students an insight in handling electrical and electronic instruments.

Experimental physics has the most striking impact on the industry wherever the instruments are used. The industries of electronics, telecommunication and instrumentation will specially recognize this course.

DIPLOMA IN APPLIED PHYSICS WITH ELECTRONICS

SECOND YEAR

This programme aims to introduce the students with Electromagnetic Theory, Modern Optics and Relativistic Mechanics. Electromagnetic Wave Propagation serves as a basis for all communication systems and deals with the physics and technology of semiconductor optoelectronic devices. A deeper insight in Electronics is provided to address the important components in consumer Optoelectronics, IT and Communication devices, and in industrial instrumentation.

The need of Optical instruments and Lasers is surely highlighted everywhere and at the end of the course the students are expected to get acquaint with applications of Lasers in technology.

Companies and R&D Laboratories working on Electromagnetic properties, Laser Applications, Optoelectronics and Communication Systems are expected to value this course.

DEGREE IN BACHELOR OF SCIENCE

THIRD YEAR

This programme contains very important aspects of modern day course curriculum, namely, Classical, Quantum and Statistical computational tools required in the calculation of physical quantities of relevance in interacting many body problems in physics. It introduces the branches of Solid State Physics and Nuclear Physics that are going to be of utmost importance at both undergraduate and graduate level. Proficiency in this area will attract demand in research and industrial establishments engaged in activities involving applications of these fields.

This course amalgamates the comprehensive knowledge of Analog & Digital Principles and Applications. It presents an integrated approach to analog electronic circuitry and digital electronics.

Present course will attract immense recognition in R&D sectors and in the entire cutting edge technology based industry.

	SEMESTER-WISE PAPER TITLES WITH DETAILS						
YEAR	SEME- STER	PAPER	PAPER TITLE	PREREQUISITE For Paper	ELECTIVE For Major Subjects		
		-	CERTIFICA		NEG.		
	<u> </u>	II	N BASIC PHYSICS & SEMIC	INDUCTOR DEVIC	ES		
	STER	Theory Paper-1	Mathematical Physics & Newtonian Mechanics	Physics in 12 th / Mathematics in 12 th	YES Open to all		
FIRST YEAR	SEMESTER I	Practical Paper	Mechanical Properties of Matter	Opted / Passed Sem I, Th Paper-1	YES Bota./Chem./Comp. Sc./ Math./Stat./Zool.		
FIRST	STER	Theory Paper-1	Thermal Physics & Semiconductor Devices	Physics in 12 th / Chemistry in 12 th	YES Open to all		
	SEMESTER	Practical Paper	Thermal Properties of Matter & Electronic Circuits	Opted / Passed Sem II, Th Paper-1	YES Bota./Chem./Comp. Sc./ Math./Stat./Zool.		
	DIPLOMA						
			IN APPLIED PHYSICS WIT	H ELECTRONICS			
	SEMESTER	Theory Paper-1	Electromagnetic Theory & Modern Optics	Passed Sem I, Th Paper-1	YES Open to all		
SECOND YEAR		Practical Paper	Demonstrative Aspects of Electricity & Magnetism	Opted / Passed Sem III, Th Paper-1	YES Bota./Chem./Comp. Sc./ Math./Stat./Zool.		
SECON	SEMESTER IV	Theory Paper-1	Perspectives of Modern Physics & Basic Electronics	Passed Sem I, Th Paper-1	YES Open to all		
		Practical Paper	Basic Electronics Instrumentation	Opted / Passed Sem IV, Th Paper-1	YES Bota./Chem./Comp. Sc./ Math./Stat./Zool.		
			DEGREI				
		Theory	IN BACHELOR OF Classical & Statistical	Passed	YES		
	2	Paper-1	Mechanics	Sem I, Th Paper-1	Chem./Comp. Sc./Math./Stat.		
	STE	Theory	Quantum Mechanics &	Passed	YES		
	SEMESTER V	Paper-2	Spectroscopy	Sem IV, Th Paper-1	Chem./Comp. Sc./Math./Stat.		
EAR	SE	Practical	Demonstrative Aspects of	Passed	YES		
		Paper	Optics & Lasers	Sem III, Th Paper-1	Chem./Comp. Sc./Math./Stat.		
THIRD YEAR	ER	Theory Paper-1	Solid State & Nuclear Physics	Passed Sem V, Th Paper-2	YES Chem./Comp. Sc./Math./Stat.		
	EST VI	Theory	Analog & Digital Principles &	Passed	YES		
	SEMESTER VI	Paper-2 Practical	Applications Analog & Digital Circuits	Sem IV, Th Paper-1 Opted / Passed Sem VI. Th Paper 2	Open to all YES Cham /Comp. So /Math /Stat.		
		Paper		Sem VI, Th Paper-2	Chem./Comp. Sc./Math./Stat.		

FIRST YEAR DETAILED SYLLABUS FOR

CERTIFICATE

IN
BASIC PHYSICS & SEMICONDUCTOR DEVICES

YEAR	SEME-	PAPER	PAPER TITLE	UNIT TITLE			
YEAR	STER	PAPER	PAPER IIILE	(Periods Per Semester)			
			CERTIFIC	CATE			
	IN BASIC PHYSICS & SEMICONDUCTOR DEVICES						
				<u>Part A</u>			
			Mathematical Physics &	I: Vector Algebra (7)			
	SEMESTER I		Newtonian Mechanics	II: Vector Calculus (8)			
			Newtoman Mechanics	III: Coordinate Systems (8)			
		Theory	Part A: Basic Mathematical	IV: Introduction to Tensors (7)			
		Paper-1		<u>Part B</u>			
			Physics Part B: Newtonian Mechanics	V: Dynamics of a System of Particles (8)			
			& Wave Motion	VI: Dynamics of a Rigid Body (8)			
	3 1			VII: Motion of Planets & Satellites (7)			
				VIII: Wave Motion (7)			
AR		Practical	Mechanical Properties of	Lab Experiment List			
FIRST YEAR		Paper	Matter	Online Virtual Lab Experiment List/Link			
\mathbf{ST}				<u>Part A</u>			
IR			Thermal Physics & Semiconductor Devices	I: 0 th & 1 st Law of Thermodynamics (8)			
1				II: 2 nd & 3 rd Law of Thermodynamics (8)			
				III: Kinetic Theory of Gases (7)			
	$3\mathbf{R}$	Theory	Part A: Thermodynamics &	IV: Theory of Radiation (7)			
	STI	Paper-1	Kinetic Theory of Gases	<u>Part B</u>			
	ÆS II		<u> </u>	V: DC & AC Circuits (7)			
	SEMESTER II		Part B: Circuit Fundamentals	VI: Semiconductors & Diodes (8)			
	9 2		& Semiconductor Devices	VII: Transistors (8)			
				VIII: Electronic Instrumentation (7)			
		Practical	Thermal Properties of	Lab Experiment List			
		Paper	Matter & Electronic Circuits	Online Virtual Lab Experiment List/Link			

Progr	amme/Class: Certificate	Year: Fir s	st	Semester: First	
		Subject: P	hysics		
Cours	se Code: B010101T	Course Title: Ma	thematical Physics	& Newtonian Mechanics	S
		Course Outco	mes (COs)		
 Recognize the difference between scalars, vectors, pseudo-scalars and pseudo-vectors. Understand the physical interpretation of gradient, divergence and curl. Comprehend the difference and connection between Cartesian, spherical and cylindrical coordinate system Know the meaning of 4-vectors, Kronecker delta and Epsilon (Levi Civita) tensors. Study the origin of pseudo forces in rotating frame. Study the response of the classical systems to external forces and their elastic deformation. Understand the dynamics of planetary motion and the working of Global Positioning System (GPS). Comprehend the different features of Simple Harmonic Motion (SHM) and wave propagation. 					
	Credits:	4	Core	Compulsory / Elective	
Max. Marks: 25+75 Min. Passing Marks:					
	Total No. of	Lectures-Tutorials-Practica	al (in hours per weel	k): L-T-P: 4-0-0	
Unit		Topics			No. of Lecture
		<u>PART</u> Basic Mathema			
I	in context with	e physical examples). Conddition, subtraction, dot pr	f modern science and s Internal Evaluation brackets for defining scalar apponent form in 2D toduct, wedge product.	nd technology, on (CIE). rs, vectors, pseudo- scalars and 3D. Geometrical and act, cross	
п	Geometrical and physical and their significance. Vect Gradient theorem, Gauss-d Helmholtz theorem (statem	or integration, Line, Surfactivergence theorem, Stoke-c	fferentiation, Gradie (flux) and Volume curl theorem, Greens	e integrals of vector fields.	
	2D & 3D Cartesian, Sphe equations. Expressions for divergence and curl in different coordinate system	displacement vector, arc le ferent coordinate systems.	dinate systems, bas ngth, area element, Components of ve	volume element, gradient, locity and acceleration in	, 8

	Introduction to Tensors	
	Principle of invariance of physical laws w.r.t. different coordinate systems as the basis for defining	
IV	tensors. Coordinate transformations for general spaces of nD, contravariant, covariant & mixed	7
1 4	tensors and their ranks, 4-vectors. Index notation and summation convention. Symmetric and skew-	/
	symmetric tensors. Invariant tensors, Kronecker delta and Epsilon (Levi Civita) tensors. Examples	
	of tensors in physics.	
	PART B	
	Newtonian Mechanics & Wave Motion	
	Dynamics of a System of Particles	
	Review of historical development of mechanics up to Newton. Background, statement and critical	
V	analysis of Newton's axioms of motion. Dynamics of a system of particles, centre of mass motion,	8
	and conservation laws & their deductions. Rotating frames of reference, general derivation of origin	
	of pseudo forces (Euler, Coriolis & centrifugal) in rotating frame, and effects of Coriolis force.	
	Dynamics of a Rigid Body	
	Angular momentum, Torque, Rotational energy and the inertia tensor. Rotational inertia for simple	
VI	bodies (ring, disk, rod, solid and hollow sphere, solid and hollow cylinder, rectangular lamina). The	8
	combined translational and rotational motion of a rigid body on horizontal and inclined planes.	
	Elasticity, relations between elastic constants, bending of beam and torsion of cylinder.	
	Motion of Planets & Satellites	
	Two particle central force problem, reduced mass, relative and centre of mass motion. Newton's law	
VI	of gravitation, gravitational field and gravitational potential. Kepler's laws of planetary motion and	7
	their deductions. Motions of geo-synchronous & geo-stationary satellites and basic idea of	
	Global Positioning System (GPS).	
	Wave Motion	
	Differential equation of simple harmonic motion and its solution, use of complex notation, damped	
VII	and forced oscillations, Quality factor. Composition of simple harmonic motion, Lissajous figures.	7
V 11	Differential equation of wave motion. Plane progressive waves in fluid media, reflection of waves	,
	and phase change, pressure and energy distribution. Principle of superposition of waves, stationary	
	waves, phase and group velocity.	
	Suggested Readings	

PART A

- Murray Spiegel, Seymour Lipschutz, Dennis Spellman, "Schaum's Outline Series: Vector Analysis", McGraw Hill, 2017, 2e
- 2. A.W. Joshi, "Matrices and Tensors in Physics", New Age International Private Limited, 1995, 3e

PART B

- Charles Kittel, Walter D. Knight, Malvin A. Ruderman, Carl A. Helmholz, Burton J. Moyer, "Mechanics (In SI Units): Berkeley Physics Course Vol 1", McGraw Hill, 2017, 2e
- Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics Vol. 1", Pearson Education Limited, 2012
- 3. Hugh D. Young and Roger A. Freedman, "Sears & Zemansky's University Physics with Modern Physics", Pearson Education Limited, 2017, 14e
- 4. D.S. Mathur, P.S. Hemne, "Mechanics", S. Chand Publishing, 1981, 3e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Physics in 12th / Mathematics in 12th

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Progra	amme/Class: Certificate	Year: Fir s	st	Semester: First	
		Subject: P	hysics		
Cours	e Code: B010102P	Course Ti	itle: Mechanical Pi	roperties of Matter	
		Course Outco	mes (COs)		
detern	imental physics has the monine the mechanical proper e Virtual Lab Experiments Credits:	ties. Measurement precision give an insight in simulation	on and perfection is n techniques and pr	achieved through Lab Ex	periments
	Max. Marks:			Ain. Passing Marks:	
	I otal Ivo. of	Lectures-Tutorials-Practica	ai (in nours per wee	ek): L-1-P: U-U-4	.
Unit		Topics			No. of Lectures
		Lab Experime	ent List		
	 Modulus of rigidity Modulus of rigidity Young's modulus Young's modulus Poisson's ratio of rigidity Poisson's ratio of rigidity Surface tension of Coefficient of visc Acceleration due to Frequency of AC rigidity Height of a building Study the wave for 	·	ton's apparatus) nere / disc / Maxwe le's method nod 's method		60
		Online Virtual Lab Expe	riment List / Link		
	•	=1&brch=74 acceleration of a fly wheelons in different liquids of flywheel	1		

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e
- 3. R.K. Agrawal, G. Jain, R. Sharma, "Practical Physics", Krishna Prakashan Media (Pvt.) Ltd., Meerut, 2019
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014, 2e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=74
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester I, Theory Paper-1 (B010101T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)
05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

Progr	amme/Class: Certificate	Year: Fir	st Semester: Secon	d	
		Subject: P	hysics		
Cours	se Code: B010201T	Course Title: T	Thermal Physics & Semiconductor Devices		
	·	Course Outco	mes (COs)		
2. U 3. C 4. S 5. U 6. R 7. D	decognize the difference between difference between difference to the physical significant comprehend the kinetic mode tudy the implementations are diffilled in the physical significant components of the physical	ficance of thermodynamical of gases w.r.t. various gard limitations of fundamentants of electronic devices.	al potentials. as laws. cal radiation laws.		
Credits: 4 Core Compulsory / Elective					
Max. Marks: 25+75 Min. Passing Marks:					
	Total No. of	Lectures-Tutorials-Practic	al (in hours per week): L-T-P: 4-0-0		
Unit		Topics		No. of Lectures	
		PART			
		Thermodynamics & Kin 0 th & 1 st Law of Ther		T	
I	energy, heat and work don	logy of thermodynamics. Ze. Work done in various the sengine, efficiency and C	Zeroth law and temperature. First law, internated armodynamical processes. Enthalpy, relation Carnot's theorem. Efficiency of internal		
		2 nd & 3 rd Law of The	rmodynamics		
Different statements of second law, Clausius inequality, entropy and its physical significance. Entropy changes in various thermodynamical processes. Third law of thermodynamics and unattainability of absolute zero. Thermodynamical potentials, Maxwell's relations, conditions for feasibility of a process and equilibrium of a system. Clausius- Clapeyron equation, Joule-Thompson effect.				d 1 8	
		Kinetic Theory	of Gases		
III	velocities and its experime	ental verification. Degrees	ation of Maxwell's law of distribution of s of freedom, law of equipartition of energy f gases (mono, di and poly atomic).	- /	
		Theory of Rac			
IV		, deduction of Wien's d	of energy density and pressure of radiation istribution law, Rayleigh-Jeans law, Stefan- nick's law.	1	

	PART B	
	Circuit Fundamentals & Semiconductor Devices	
V	DC & AC Circuits Growth and decay of currents in RL circuit. Charging and discharging of capacitor in RC, LC and RCL circuits. Network Analysis - Superposition, Reciprocity, Thevenin's and Norton's theorems. AC Bridges - measurement of inductance (Maxwell's, Owen's and Anderson's bridges) and measurement of capacitance (Schering's, Wein's and de Sauty's bridges).	
VI	Semiconductors & Diodes P and N type semiconductors, qualitative idea of Fermi level. Formation of depletion layer in PN junction diode, field & potential at the depletion layer. Qualitative idea of current flow mechanism in forward & reverse biased diode. Diode fabrication. PN junction diode and its characteristics, static and dynamic resistance. Principle, structure, characteristics and applications of Zener, Tunnel, Light Emitting, Point Contact and Photo diodes. Half and Full wave rectifiers, calculation of ripple factor, rectification efficiency and voltage regulation. Basic idea about filter circuits and voltage regulated power supply.	8
VII	Transistors Bipolar Junction PNP and NPN transistors. Study of CB, CE & CC configurations w.r.t. active, cutoff & saturation regions; characteristics; current, voltage & power gains; transistor currents & relations between them. Idea of base width modulation, base spreading resistance & transition time. DC Load Line analysis and Q-point stabilisation. Voltage Divider Bias circuit for CE amplifier. Qualitative discussion of RC coupled amplifier (frequency response not included).	8
VIII	Electronic Instrumentation Multimeter: Principles of measurement of dc voltage, dc current, ac voltage, ac current and resistance. Specifications of a multimeter and their significance. Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, electron gun, electrostatic focusing and acceleration (no mathematical treatment). Front panel controls, special features of dual trace CRO, specifications of a CRO and their significance. Applications of CRO to study the waveform and measurement of voltage, current, frequency & phase difference.	7
	Suggested Readings	

PART A

- 1. M.W. Zemansky, R. Dittman, "Heat and Thermodynamics", McGraw Hill, 1997, 7e
- 2. F.W. Sears, G.L. Salinger, "Thermodynamics, Kinetic theory & Statistical thermodynamics", Narosa Publishing House, 1998
- 3. Enrico Fermi, "Thermodynamics", Dover Publications, 1956
- 4. S. Garg, R. Bansal, C. Ghosh, "Thermal Physics", McGraw Hill, 2012, 2e
- 5. Meghnad Saha, B.N. Srivastava, "A Treatise on Heat", Indian Press, 1973, 5e

PART B

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. A. Sudhakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e
- 6. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Physics in 12th / Chemistry in 12th

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Progra	amme/Class: Certificate	Year: Fir s	st	Semester: Secon	d
		Subject: P	hysics		
Cours	e Code: B010202P	Course Title: There	mal Properties of I	Matter & Electronic Circ	cuits
		Course Outco	mes (COs)		
Exper	imental physics has the mo	est striking impact on the in	ndustry wherever th	ne instruments are used to	study an
	nine the thermal and elect				
	iments. Online Virtual Lab E		-	•	_
	Credits:			Compulsory / Elective	
	Max. Marks:	25+75	N	Iin. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practical	al (in hours per wee	k): L-T-P: 0-0-4	
T T •4					No. of
Unit		Topics			Lecture
		Lab Experime	nt List		
	1. Mechanical Equiva	alent of Heat by Callender a			-
	•	mal conductivity of copper			
		mal conductivity of rubber	by Scarre 5 apparai		
		mal conductivity of a bad co	onductor by Lee an	d Charlton's disc method	
	5. Value of Stefan's of	· · · · · · · · · · · · · · · · · · ·	onductor by Lee an	d Chariton's disc method	
	6. Verification of Ste				
		o-emf across two junctions	of a thormocouple	with tomporature	
		cient of resistance by Platin	-	-	
	_	narging in RC and RCL circ		mometer	
				nd C	
		ous experiments based on r	neasurement of L a	iid C	
		s and parallel RCL circuit	Tiela Emiliate e e	1 Dl	
		PN Junction, Zener, Tunnel	-		
		transistor (PNP and NPN)		configurations	
		vave rectifiers and Filter cir	cuits		60
	15. Unregulated and R		'11 (CDO)		
		ents with Cathode Ray Osc			-
		Online Virtual Lab Expen	riment List / Link		
	Thermal Properties of Ma				
	Virtual Labs at Amrita Visl	• •			
	https://vlab.amrita.edu/?sub	<u>=1&brch=194</u>			
	1. Heat transfer by rac	liation			
	2. Heat transfer by co	nduction			
	3. Heat transfer by na				
	4. The study of phase				
	• •	on: Determination of Stefan	's constant		
	6. Newton's law of co				
	7. Lee's disc apparatu				
	8. Thermo-couple: Se				

Semiconductor Devices:

Virtual Labs an initiative of MHRD Govt. of India

http://vlabs.iitkgp.ac.in/be/#

- 9. Familiarisation with resistor
- 10. Familiarisation with capacitor
- 11. Familiarisation with inductor
- 12. Ohm's Law
- 13. RC Differentiator and integrator
- 14. VI characteristics of a diode
- 15. Half & Full wave rectification
- 16. Capacitative rectification
- 17. Zener Diode voltage regulator
- 18. BJT common emitter characteristics
- 19. BJT common base characteristics
- 20. Studies on BJT CE amplifier

Suggested Readings

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e
- 3. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 4. A. Sudhakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=194
- 2. Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/be/#
- 3. Digital Platforms / Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester II, Theory Paper-1 (B010201T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)

05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

SECOND YEAR DETAILED SYLLABUS FOR

DIPLOMA

IN
ADVANCED PHYSICS WITH ELECTRONICS

YEAR	SEME-	PAPER	PAPER TITLE	UNIT TITLE		
	STER			(Periods Per Semester)		
			DIPLON			
IN APPLIED PHYSICS WITH ELECTRONICS						
				<u>Part A</u>		
			Electromagnetic Theory &	I: Electrostatics (8)		
			Modern Optics	II: Magnetostatics (8)		
			Wodern Opties	III: Time Varying Electromagnetic Fields (7)		
	$\mathbf{E}\mathbf{R}$	Theory	Part A: Electromagnetic	IV: Electromagnetic Waves (7)		
	SEMESTER III	Paper-1	_	<u>Part B</u>		
			Theory Double Dr. Physical Option &	V: Interference (8)		
	SEN		Part B: Physical Optics & Lasers	VI: Diffraction (8)		
	9 1			VII: Polarisation (7)		
~				VII: Lasers (7)		
$\mathbb{E}\mathbf{A}$		Practical	Demonstrative Aspects of	Lab Experiment List		
SECOND YEAR		Paper	Electricity & Magnetism	Online Virtual Lab Experiment List/Link		
				Part A		
CC			Perspectives of Modern Physics & Basic Electronics	I: Relativity-Experimental Background (7)		
SE				II: Relativity-Relativistic Kinematics (8)		
				III: Inadequacies of Classical Mechanics (8)		
	\mathbf{c}	Theory	Dont A. Donon actions of	IV: Introduction to Quantum Mechanics (7)		
	STI '	Paper-1	Part A: Perspectives of	<u>Part B</u>		
	ÆS IV		Modern Physics	V: Transistor Biasing (7)		
	SEMESTER IV		Part B: Basic Electronics &	VI: Amplifiers (7)		
	9 1		Introduction to Fiber Optics	VII: Feedback & Oscillator Circuits (8)		
				VIII: Introduction to Fiber Optics (8)		
		Practical	Basic Electronics	Lab Experiment List		
		Paper	Instrumentation	Online Virtual Lab Experiment List/Link		

Progr	rogramme/Class: Diploma Year: Second Semester: Third					
	1	Subject: P	Physics			
Cours	e Code: B010301T	Course Title: F	Electromagnetic Theory & Modern Optics			
		Course Outco	mes (COs)			
. B	etter understanding of electr	cal and magnetic phenom	enon in daily life.			
	To troubleshoot simple problems related to electrical devices. Comprehend the powerful applications of ballistic galvanometer.					
	Study the fundamental physics behind reflection and refraction of light (electromagnetic waves). Study the working and applications of Michelson and Fabry-Perot interferometers.					
	tudy the working and applicate ecognize the difference between		•			
	omprehend the use of polari		orer's class of diffraction.			
	tudy the characteristics and u					
	Credits:		Core Compulsory / Elective			
	Max. Marks:		Min. Passing Marks:			
			al (in hours per week): L-T-P: 4-0-0			
	10(a) 100. 01	Lectures-1 utoriais-1 factic	ar (iii flours per week). L-1-1 . 4-0-0	No. of		
Jnit		Topics		Lectures		
		<u>PART</u>				
		Electromagne				
	Electrostatics Electric charge & charge densities, electric force between two charges. General expression for					
	-		-			
I	Electric field in terms of volume charge density (divergence & curl of Electric field), general expression for Electric potential in terms of volume charge density and Gauss law (applications					
	_		natter, polarization, auxiliary field \mathbf{D} (Electr			
	displacement), electric susce	•	, , , , , , , , , , , , , , , , , , , ,			
		Magnetosta	atics			
	Electric current & current	densities, magnetic for	ce between two current elements. Gener	al		
	expression for Magnetic field in terms of volume current density (divergence and curl of Magnetic					
II	•		erms of volume current density and Ampere			
	circuital law (applications included). Study of magnetic dipole (Gilbert & Ampere model). Magnetic					
	fields in matter, magnetisation, auxiliary field H , magnetic susceptibility and					
	permeability.	Time Varying Electron	magnatic Fields			
	Faraday's laws of electrom	• 0	enz's law. Displacement current, equation	of		
III	*	-	and mutual induction (applications included			
	•	-	quations. Theory and working of moving co	*		
	ballistic galvanometer (appl					
		Electromagneti	c Waves			
			Plane electromagnetic waves in linear infini			
IV	_		vaves and dispersive & non-dispersive medi			
			tromagnetic waves, law of reflection, Snell	's		
	law, Fresnel's formulae (onl	y for normal incidence &	optical frequencies) and Stoke's law.			

	PART B			
	Physical Optics & Lasers			
	Interference			
\mathbf{v}	Conditions for interference and spatial & temporal coherence. Division of Wavefront - Fresnel's	8		
•	Biprism and Lloyd's Mirror. Division of Amplitude - Parallel thin film, wedge shaped film and	O		
	Newton's Ring experiment. Interferometer - Michelson and Fabry-Perot.			
	Diffraction			
	Distinction between interference and diffraction. Fresnel's and Fraunhofer's class of diffraction.			
VI	Fresnel's Half Period Zones and Zone plate. Fraunhofer diffraction at a single slit, n slits and			
	Diffracting Grating. Resolving Power of Optical Instruments - Rayleigh's criterion and resolving			
	power of telescope, microscope & grating.			
	Polarisation			
VII	Polarisation by dichronic crystals, birefringence, Nicol prism, retardation plates and Babinet's	7		
VII	compensator. Analysis of polarized light. Optical Rotation - Fresnel's explanation of optical	/		
	rotation and Half Shade & Biquartz polarimeters.			
	Lasers			
VIII	Characteristics and uses of Lasers. Quantitative analysis of Spatial and Temporal coherence.	7		
VIII	Conditions for Laser action and Einstein's coefficients. Three and four level laser systems	,		
	(qualitative discussion).			

PART A

- 1. D.J. Griffiths, "Introduction to Electrodynamics", Prentice-Hall of India Private Limited, 2002, 3e
- 2. E.M. Purcell, "Electricity and Magnetism (In SI Units): Berkeley Physics Course Vol 2", McGraw Hill, 2017, 2e
- Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics Vol. 2", Pearson Education Limited, 2012
- 4. D.C. Tayal, "Electricity and Magnetism", Himalaya Publishing House Pvt. Ltd., 2019, 4e

PART B

- 1. Francis A. Jenkins, Harvey E. White, "Fundamentals of Optics", McGraw Hill, 2017, 4e
- 2. Samuel Tolansky, "An Introduction to Interferometry", John Wiley & Sons Inc., 1973, 2e
- 3. A. Ghatak, "Optics", McGraw Hill, 2017, 6e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester I, Theory Paper-1 (B010101T)

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Programme/Class: Diploma		ne/Class: Diploma Year: Second Semester: The		Semester: Third	l
		Subject: P	hysics		
Course	e Code: B010302P	Course Title: Dem	onstrative Aspects of l	Electricity & Magneti	ism
		Course Outco	mes (COs)		
detern	nine the electric and magn	ost striking impact on the in netic properties. Measurem	nent precision and per	fection is achieved th	rough La
Experi	ments. Online Virtual Lab E	experiments give an insight in	n simulation techniques a	and provide a basis for r	nodeling.
	Credits:	2	Core Cor	mpulsory / Elective	
	Max. Marks:	25+75	Min.	Passing Marks:	
	Total No. of	Lectures-Tutorials-Practica	al (in hours per week): l	L-T-P: 0-0-4	
Unit		Topics			No. of Lecture
		Lab Experime	nt List		
	 Variation of magne Ballistic Galvanon Ballistic Galvanon Ballistic Galvanon 	etic field along the axis of site field along the axis of Heter: Ballistic constant, curveter: High resistance by Leneter: Low resistance by Keneter: Self inductance of a c	Telmholtz coil rent sensitivity and volt akage method lvin's double bridge me	ethod	
	 Ballistic Galvanometer: Comparison of capacitances Carey Foster Bridge: Resistance per unit length and low resistance Deflection and Vibration Magnetometer: Magnetic moment of a magnet and horizontal component of earth's magnetic field 				
10. Earth Inductor: Horizontal component of earth's magnetic field					60
	Online Virtual Lab Experiment List / Link				=
	Virtual Labs at Amrita Visl https://vlab.amrita.edu/?sub	• 1			

3. Deflection magnetometer

- 2. Magnetic field along the axis of a circular coil carrying current
- 4. Van de Graaff generator
- 5. Barkhausen effect
- 6. Temperature coefficient of resistance
- 7. Anderson's bridge
- 8. Quincke's method

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e
- 3. R.K. Agrawal, G. Jain, R. Sharma, "Practical Physics", Krishna Prakashan Media (Pvt.) Ltd., Meerut, 2019
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014, 2e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=192
- 2. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester III, Theory Paper-1 (B010301T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)
05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

Progr	ramme/Class: Diploma	Year: Seco	Semester: Fourt	th	
	,	Subject: P	Physics		
Cours	Course Code: B010401T Course Title: Perspectives of Modern Physics & Basic Electronic				
	,	Course Outco	mes (COs)		
	•	•	& time in Newtonian & Relativistic mechani	cs.	
		-	f Lorentz transformation equations.		
	Comprehend the wave-particle	<u> </u>	S O utous Montonia		
	Develop an understanding of tudy the comparison betwee	•			
	tudy the classification of am	-	cs.		
	Comprehend the use of feedb	_			
	Comprehend the theory and v		ong with its applications.		
	Credits:		Core Compulsory / Elective		
	Credits.	-	Core Compulsory / Elective		
	Max. Marks:	25+75	Min. Passing Marks:		
	Total No. of	Lectures-Tutorials-Practic	al (in hours per week): L-T-P: 4-0-0		
Unit		Topics		No. of Lectures	
		PART			
		Perspectives of M		T	
	Relativity-Experimental Background Structure of space & time in Newtonian mechanics and inertial & non inertial frames. Galilean				
I	Structure of space & time in Newtonian mechanics and inertial & non-inertial frames. Galilean transformations. Newtonian relativity. Galilean transformation and Electromagnetism. Attempts to				
•	locate the Absolute Frame: Michelson-Morley experiment and significance of the null result.			o 7	
	Einstein's postulates of special theory of relativity.				
	1	Relativity-Relativisti	c Kinematics		
	Structure of space & time	e in Relativistic mechanic	es and derivation of Lorentz transformatio	n	
	equations (4-vector formulation included). Consequences of Lorentz Transformation Equations			s	
II	(derivations & examples included): Transformation of Simultaneity (Relativity of simultaneity);			1 8	
	Transformation of Length (Length contraction); Transformation of Time (Time dilation);				
	Transformation of Velocity (Relativistic velocity addition); Transformation of Acceleration;				
	Transformation of Mass (Variation of mass with velocity). Relation between Energy & Mass (Einstein's mass & energy relation) and Energy & Momentum.				
	(Einstein's mass & energy i	Inadequacies of Class			
	Particle Properties of Wave	-			
ш	Particle Properties of Waves: Spectrum of Black Body radiation, Photoelectric effect, Compton effect and their explanations based on Max Planck's Quantum hypothesis.				
	_	Wave Properties of Particles: Louis de Broglie's hypothesis of matter waves and their experimental			
	verification by Davisson-Germer's experiment and Thomson's experiment.				
	•	Introduction to Quant			
	Matter Waves: Mathematical representation, Wavelength, Concept of Wave group, Group (particle)				
IV	velocity, Phase (wave) velo	city and relation between (Group & Phase velocities.	7	
	Wave Function: Functional form, Normalisation of wave function, Orthogonal & Orthonormal				
	wave functions and Probabilistic interpretation of wave function based on Born Rule.				

	PART B Basic Electronics & Introduction to Fiber Optics				
	Transistor Biasing				
	Faithful amplification & need for biasing. Stability Factors and its calculation for transistor biasing circuits for CE configuration: Fixed Bias (Base Resistor Method), Emitter Bias (Fixed Bias with Emitter Resistor), Collector to Base Bias (Base Bias with Collector Feedback) &, Voltage Divider Bias. Discussion of Emitter-Follower configuration.	7			
	Amplifiers				
VI	Classification of amplifiers based on Mode of operation (Class A, B, AB, C & D), Stages (single & multi stage, cascade & cascode connections), Coupling methods (RC, Transformer, Direct & LC couplings), Nature of amplification (Voltage & Power amplification) and Frequency capabilities (AF, IF, RF & VF). Theory & working of RC coupled voltage amplifier (Uses of various resistors & capacitors, and Frequency response) and Transformer coupled power amplifier (calculation of Power, Effect of temperature, Use of heat sink & Power dissipation). Calculation of Amplifier Efficiency (power efficiency) for Class A Series-Fed, Class A Transformer Coupled, Class B Series-Fed and Class B Transformer Coupled amplifiers.	7			
	Feedback & Oscillator Circuits				
VII	Feedback Circuits: Effects of positive and negative feedback. Voltage Series, Voltage Shunt, Current Series and Current Shunt feedback connection types and their uses for specific amplifiers. Estimation of Input Impedance, Output Impedance, Gain, Stability, Distortion, Noise and Band Width for Voltage Series negative feedback and their comparison between different negative feedback connection types. Oscillator Circuits: Use of positive feedback for oscillator operation. Barkhausen criterion for self-sustained oscillations. Feedback factor and frequency of oscillation for RC Phase Shift oscillator and Wein Bridge oscillator. Qualitative discussion of Reactive Network feedback oscillators (Tuned	8			
	oscillator circuits): Hartley & Colpitt oscillators.				
VIII	Introduction to Fiber Optics Basics of Fiber Optics, step index fiber, graded index fiber, light propagation through an optical fiber, acceptance angle & numerical aperture, qualitative discussion of fiber losses and applications of optical fibers.	8			
Suggested Readings					

PART A

- 1. A. Beiser, Shobhit Mahajan, "Concepts of Modern Physics: Special Indian Edition", McGraw Hill, 2009, 6e
- 2. John R. Taylor, Chris D. Zafiratos, Michael A.Dubson, "Modern Physics for Scientists and Engineers", Prentice-Hall of India Private Limited, 2003, 2e
- 3. R.A. Serway, C.J. Moses, and C.A. Moyer, "Modern Physics", Cengage Learning India Pvt. Ltd, 2004, 3e
- 4. R. Resnick, "Introduction to Special Relativity", Wiley India Private Limited, 2007
- 5. R. Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e

PART B

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. John M. Senior, "Optical Fiber Communications: Principles and Practice", Pearson Education Limited, 2010, 3e
- 6. John Wilson, John Hawkes, "Optoelectronics: Principles and Practice", Pearson Education Limited, 2018, 3e
- 7. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester I, Theory Paper-1 (B010101T)

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Progra	amme/Class: Diploma	Year: Secon	nd	Semester: Fourt	h
		Subject: Ph	nysics	L	
Cours	e Code: B010402P	Course Tit	le: Basic Electron	nics Instrumentation	
		Course Outcom	nes (COs)		
are us Lab E	ed to study and determine to	has the most striking impactive electronic properties. Me Lab Experiments give an i	asurement precision	on and perfection is achiev	
	Credits:	2	Core	Compulsory / Elective	
	Max. Marks:	25+75	N	Min. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practical	l (in hours per wee	ek): L-T-P: 0-0-4	
Unit		Topics			No. of Lectures
		Lab Experimen	nt List		
	 Clippers and Clam Study of Emitter F Frequency respons Frequency respons 	of CE, CB and CC amplifications of CE, CB and CC amplifications of CE, CB and CC amplifications of CE,	l amplifier er coupled amplific		
		Online Virtual Lab Exper	iment List / Link		
	Virtual Labs an initiative of http://vlabs.iitkgp.ac.in/psa				60
	 Diode as Clippers Diode as Clampers BJT as switch and 				
	Virtual Labs an initiative of http://vlabs.iitkgp.ac.in/be/s				
	4. RC frequency resp	onse			
	Virtual Labs at Amrita Visl https://vlab.amrita.edu/inde	• •			
	5. Hartley oscillator6. Colpitt oscillator				

Virtual Labs at Amrita Vishwa Vidyapeetham

http://vlab.amrita.edu/index.php?sub=59&brch=269

- 7. Fiber Optic Analog and Digital Link
- 8. Fiber Optic Bi-directional Communication
- 9. Wavelength Division Multiplexing
- 10. Measurement of Bending Losses in Optical Fiber
- 11. Measurement of Numerical Aperture
- 12. Study of LED and Detector Characteristics

Suggested Readings

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. John M. Senior, "Optical Fiber Communications: Principles and Practice", Pearson Education Limited, 2010, 3e
- 6. John Wilson, John Hawkes, "Optoelectronics: Principles and Practice", Pearson Education Limited, 2018, 3e
- 7. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

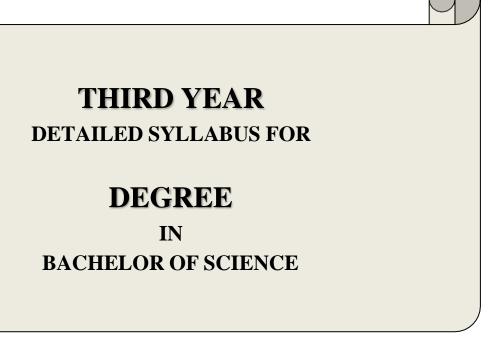
- 1. Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/psac/#
- 2. Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/be/#
- 3. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/index.php?sub=1&brch=201
- 4. Virtual Labs at Amrita Vishwa Vidyapeetham, http://vlab.amrita.edu/index.php?sub=59&brch=269
- 5. Digital Platforms /Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester IV, Theory Paper-1 (B010401T)

This course can be opted as an Elective by the students of following subjects

Botany / Chemistry / Computer Science / Mathematics / Statistics / Zoology


Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)
05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

YEAR	SEME-	PAPER	PAPER TITLE	UNIT TITLE
ILAK	STER	TATEK		(Periods Per Semester)
			DEGRE	
			IN BACHELOR O	
			Classical & Statistical	Part A I: Constrained Motion (6)
			Mechanics	II: Lagrangian Formalism (9)
				III: Hamiltonian Formalism (8)
		Theory	Part A: Introduction to Classical Mechanics	IV: Central Force (7)
		Paper-1	Part B: Introduction to	<u>Part B</u>
			Statistical Mechanics	V: Macrostate & Microstate (6)
			Statistical Mechanics	VI: Concept of Ensemble (6)
				VII: Distribution Laws (10)
	ER			VIII: Applications of Statistical Distribution Laws (8)
	ST 7			Part A
	SEMESTER V		Quantum Mechanics &	I: Operator Formalism (5)
	SE		Spectroscopy	II: Eigen & Expectation Values (6)
			periode py	III: Uncertainty Principle & Schrodinger Equation (7)
		Theory	Part A: Introduction to Quantum Mechanics Part B: Introduction to Spectroscopy	IV: Applications of Schrodinger Equation (12)
		Paper-2		Part B
				V: Vector Atomic Model (10)
				VI: Spectra of Alkali & Alkaline Elements (6)
				VII: X-Rays & X-Ray Spectra (7)
2		D .: 1		VIII: Molecular Spectra (7)
EA		Practical	Demonstrative Aspects of	Lab Experiment List
D Y		Paper	Optics & Lasers	Online Virtual Lab Experiment List/Link
THIRD YEAR				Part A I. Crystal Structure (7)
TH			Solid State & Nuclear Physics	I: Crystal Structure (7) II: Crystal Diffraction (7)
				III: Crystal Bindings (7)
		Theory		IV: Lattice Vibrations (9)
		Paper-1	Part A: Introduction to Solid	Part B
		1 aper 1	State Physics Part B: Introduction to Nuclear Physics	V: Nuclear Forces & Radioactive Decays (9)
				VI: Nuclear Models & Nuclear Reactions (9)
				VII: Accelerators & Detectors (6)
	\mathbf{c}			VIII: Elementary Particles (6)
	STI			Part A
	SEMESTER VI			I: Semiconductor Junction (9)
	SEI		Analog & Digital Principles	II: Transistor Modeling (8)
	J 1		& Applications	III: Field Effect Transistors (8)
		Theory		IV: Other Devices (5)
		Paper-2	Part A: Analog Electronic	<u>Part B</u>
			Circuits	V: Number System (6)
			Part B: Digital Electronics	VI: Binary Arithmetic (5)
				VII: Logic Gates (9)
				VIII: Combinational & Sequential Circuits (10)
		Practical	Analog & Digital Circuits	Lab Experiment List
		Paper		Online Virtual Lab Experiment List/Link

Programme/Class: Degree		Year: Thi	rd	Semester: Fifth	
		Subject: P	hysics		
Cours	Course Code: B010501T Course Title: Classical & Statistical Mechanics				
		Course Outco	mes (COs)		
 Understand the concepts of generalized coordinates and D'Alembert's principle. Understand the Lagrangian dynamics and the importance of cyclic coordinates. Comprehend the difference between Lagrangian and Hamiltonian dynamics. Study the important features of central force and its application in Kepler's problem. Recognize the difference between macrostate and microstate. Comprehend the concept of ensembles. Understand the classical and quantum statistical distribution laws. Study the applications of statistical distribution laws. 					
	Credits:	4	Core	Compulsory / Elective	
	Max. Marks:	25+75	M	in. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practica	al (in hours per weel	k): L-T-P: 4-0-0	
Unit	it Topics			No. of Lectures	
		PART			
		Introduction to Clas Constrained M			
I	Constraints - Definition, Cl Constrained system, Force Transformation equations D'Alembert's principle.	assification and Examples. es of constraint and Co	Degrees of Freedomnstrained motion.	Generalised coordinates,	, 6
II	Lagrangian Formalism Lagrangian for conservative & non-conservative systems, Lagrange's equation of motion (not derivation), Comparison of Newtonian & Lagrangian formulations, Cyclic coordinates, and Conservation laws (with proofs and properties of kinetic energy function included). Simple examples based on Lagrangian formulation.				
		Hamiltonian Fo	rmalism		
III	Phase space, Hamiltonian for conservative & non-conservative systems, Physical significance of Hamiltonian, Hamilton's equation of motion (no derivation), Comparison of Lagrangian & Hamiltonian formulations, Cyclic coordinates, and Construction of Hamiltonian from Lagrangian. Simple examples based on Hamiltonian formulation.				
Central Force Definition and properties (with prove) of central force. Equation of motion and differential equation of orbit. Bound & unbound orbits, stable & non-stable orbits, closed & open orbits and Bertrand's theorem. Motion under inverse square law of force and derivation of Kepler's laws. Laplace-Runge-Lenz vector (Runge-Lenz vector) and its applications.				7	

	PART B				
Introduction to Statistical Mechanics					
	Macrostate & Microstate				
\mathbf{v}	Macrostate, Microstate, Number of accessible microstates and Postulate of equal a priori. Phase	6			
'	space, Phase trajectory, Volume element in phase space, Quantisation of phase space and number of	O			
	accessible microstates for free particle in 1D, free particle in 3D & harmonic oscillator in 1D.				
	Concept of Ensemble				
VI	Problem with time average, concept of ensemble, postulate of ensemble average and Liouville's	6			
VI	theorem (proof included). Micro Canonical, Canonical & Grand Canonical ensembles.	U			
	Thermodynamic Probability, Postulate of Equilibrium and Boltzmann Entropy relation.				
	Distribution Laws				
	Statistical Distribution Laws: Expressions for number of accessible microstates, probability &				
	number of particles in ith state at equilibrium for Maxwell-Boltzmann, Bose-Einstein & Fermi- Dirac				
VII	statistics. Comparison of statistical distribution laws and their physical significance.	10			
	Canonical Distribution Law: Boltzmann's Canonical Distribution Law, Boltzmann's Partition				
	Function, Proof of Equipartition Theorem (Law of Equipartition of energy) and relation between				
	Partition function and Thermodynamic potentials.				
	Applications of Statistical Distribution Laws				
	Application of Bose-Einstein Distribution Law: Photons in a black body cavity and derivation of				
VIII	Planck's Distribution Law.	8			
VIII	Application of Fermi-Dirac Distribution Law: Free electrons in a metal, Definition of Fermi energy,	0			
	Determination of Fermi energy at absolute zero, Kinetic energy of Fermi gas at absolute zero and				
	concept of Density of States (Density of Orbitals).				

PART A

- 1. Herbert Goldstein, Charles P. Poole, John L. Safko, "Classical Mechanics", Pearson Education, India, 2011, 3e
- 2. N.C. Rana, P.S. Joag, "Classical Mechanics", McGraw Hill, 2017
- 3. R.G. Takwale, P.S. Puranik, "Introduction to Classical Mechanics", McGraw Hill, 2017

PART B

- 1. F. Reif, "Statistical Physics (In SI Units): Berkeley Physics Course Vol 5", McGraw Hill, 2017, 1e
- 2. B.B. Laud, "Fundamentals of Statistical Mechanics", New Age International Private Limited, 2020, 2e
- 3. B.K. Agarwal, M. Eisner, "Statistical Mechanics", New Age International Private Limited, 2007, 2e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester I, Theory Paper-1 (B010101T)

This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Programme/Class: Degree		Year: Third		Semester: Fifth	
Subject: Physics					
Cour	rse Code: B010502T	Course Title: (Quantum Mecha	nics & Spectroscopy	
		Course Outcome	es (COs)		
 Understand the significance of operator formalism in Quantum mechanics. Study the eigen and expectation value methods. Understand the basis and interpretation of Uncertainty principle. Develop the technique of solving Schrodinger equation for 1D and 3D problems. Comprehend the success of Vector atomic model in the theory of Atomic spectra. Study the different aspects of spectra of Group I & II elements. Study the production and applications of X-rays. Develop an understanding of the fundamental aspects of Molecular spectra. 					
	Credits:	4	Core	Compulsory / Elective	
	Max. Marks:	25+75	M	in. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practical (in hours per weel	k): L-T-P: 4-0-0	
Unit	Unit Topics			No. of	
PART A			Lectures		
		Introduction to Quant	-		
		Operator Forma			
I	Operators: Review of matrix algebra, definition of an operator, special operators, operator algebra and operators corresponding to various physical-dynamical variables.			5	
		Eigen & Expectation	Values		
п	Eigen & Expectation Values: Eigen equation for an operator, eigen state (value) and eigen functions. Linear superposition of eigen functions and Non-degenerate & Degenerate eigen states. Expectation				6
		• •	· •		
ш	Uncertainty Principle & Schrodinger Equation Uncertainty Principle: Commutativity & simultaneity (theorems with proofs). Non commutativity of operators as the basis for uncertainty principle and derivation of general form of uncertainty principle through Schwarz inequality. Uncertainty principle for various conjugate pairs of physical-dynamical parameters and its applications. Schrodinger Equation: Derivation of time independent & time dependent forms, Schrodinger equation as an eigen equation, Deviation & interpretation of equation of continuity in Schrodinger representation, and Equation of motion of an operator in Schrodinger representation.				

	Applications of Schrodinger Equation	
	Application to 1D Problems: Infinite Square well potential (Particle in 1D box), Finite Square well	
	potential, Potential step, Rectangular potential barrier and 1D Harmonic oscillator.	
IV	Application to 3D Problems: Infinite Square well potential (Particle in a 3D box) and the Hydrogen atom	12
	(radial distribution function and radial probability included).	
	(Direct solutions of Hermite, Associated Legendre and Associated Laguerre differential equations	
	to be substituted).	
	PART B	
	Introduction to Spectroscopy	
	Vector Atomic Model	
	Inadequacies of Bohr and Bohr-Sommerfeld atomic models w.r.t. spectrum of Hydrogen atom (fine	
	structure of H-alpha line). Modification due to finite mass of nucleus and Deuteron spectrum. Vector	
V	atomic model (Stern-Gerlach experiment included) and physical & geometrical interpretations of	10
	various quantum numbers for single & many valence electron systems. LS & jj couplings,	
	spectroscopic notation for energy states, selection rules for transition of electrons and	
	intensity rules for spectral lines. Fine structure of H-alpha line on the basis of vector atomic model.	
	Spectra of Alkali & Alkaline Elements	
VI	Spectra of alkali elements: Screening constants for s, p, d & f orbitals; sharp, principle, diffuse &	6
VI	fundamental series; doublet structure of spectra and fine structure of Sodium D line.	U
	Spectra of alkaline elements: Singlet and triplet structure of spectra.	
	X-Rays & X-Ray Spectra	
VII	Nature & production, Continuous X-ray spectrum & Duane-Hunt's law, Characteristic X-ray	7
V 11	spectrum & Mosley's law, Fine structure of Characteristic X-ray spectrum, and X-ray absorption	,
	spectrum.	
	Molecular Spectra	
	Discrete set of energies of a molecule, electronic, vibrational and rotational energies. Quantisation	
VIII	of vibrational energies, transition rules and pure vibrational spectra. Quantisation of rotational	7
V 111	energies, transition rules, pure rotational spectra and determination of inter nuclear distance.	,
	Rotational-Vibrational spectra; transition rules; fundamental band & hot band; O, P, Q, R, S	
	branches.	
	a	

PART A

- 1. D.J. Griffiths, "Introduction to Quantum Mechanics", Pearson Education, India, 2004, 2e
- 2. E. Wichmann, "Quantum Physics (In SI Units): Berkeley Physics Course Vol 4", McGraw Hill, 2017
- Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics Vol. 3", Pearson Education Limited, 2012
- 4. R Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e

PART B

- 1. H.E. White, "Introduction to Atomic Spectra", McGraw Hill, 1934
- 2. C.N. Banwell, E.M. McCash, "Fundamentals of Molecular Spectroscopy", McGraw Hill, 2017, 4e
- 3. R Murugeshan, Kiruthiga Sivaprasath, "Modern Physics", S. Chand Publishing, 2019, 18e
- 4. S.L. Gupta, V. Kumar, R.C. Sharma, "Elements of Spectroscopy", Pragati Prakashan, Meerut, 2015, 27e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester IV, Theory Paper-1 (B010401T)

This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Programme/Class: Degree		Year: Third Semester: F		Semester: Fiftl	h
		Subject: P	hysics		
Cours	e Code: B010503P	Course Title: 1	Demonstrative Asp	pects of Optics & Lasers	
		Course Outco	mes (COs)		
_	* *	ost striking impact on the in	•		
		. Measurement precision	-	-	_
Onlin	Credits:	give an insight in simulation			g.
				Compulsory / Elective	
	Max. Marks:	25+75	N	Iin. Passing Marks:	
	Total No. of	Lectures-Tutorials-Practical	al (in hours per wee	k): L-T-P: 0-0-4	
Unit		Topics			No. of
		Topics			Lectures
		Lab Experime	nt List		
	•	Vavelength of sodium light			
	_	hickness of mica sheet)			
	•	Vavelength of sodium light defractive index of liquid			
		Grating: Resolving power			
		Grating: Spectrum of mercu	ry light		
		ractive index of the material		odium light	
	•	persive power of the materia	•		
	9. Polarimeter: Speci	fic rotation of sugar solution	n		
	10. Wavelength of Las	ser light using diffraction by	single slit		
	Online Virtual Lab Experiment List / Link				
	Virtual Labs at Amrita Vishwa Vidyapeetham				
	https://vlab.amrita.edu/?sul	=1&brch=189			60
	1 Micheleoule Intenfe				
	 Michelson's Interfe Michelson's Interfe 	erometer erometer: Wavelength of las	or hoom		
	3. Newton's Rings: W	· ·	er beam		
	•	efractive index of liquid			
	5. Brewster's angle d	•			
	6. Laser beam diverg				
	Virtual Labs at Amrita Vis	hwa Vidyapeetham			
	https://vlab.amrita.edu/inde	x.php?sub=1&brch=281			
	7. Spectrometer: Refu	active index of the material	of a prism		
	• • •	persive power of a prism			
	•	ermination of Cauchy's con-	stants		
	Diffraction Grating	5			

Suggested Readings

- 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e
- 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e
- 3. R.K. Agrawal, G. Jain, R. Sharma, "Practical Physics", Krishna Prakashan Media (Pvt.) Ltd., Meerut, 2019
- 4. S.L. Gupta, V. Kumar, "Practical Physics", Pragati Prakashan, Meerut, 2014, 2e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=189
- 2. Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/index.php?sub=1&brch=281
- 3. Digital Platforms / Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Passed Semester III, Theory Paper-1 (B010301T)

This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)

05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.

Programme/Class: Degree		Year: Thi	rd	Semester: Sixth		
	Subject: Physics					
Cour	Course Code: B010601T Course Title: Solid State & Nuclear Physics					
	Course Outcomes (COs)					
2. C 3. S 4. R 5. S 6. U 7. C	 Comprehend the power of X-ray diffraction and the concept of reciprocal lattice. Study various properties based on crystal bindings. Recognize the importance of Free Electron & Band theories in understanding the crystal properties. Study the salient features of nuclear forces & radioactive decays. Understand the importance of nuclear models & nuclear reactions. Comprehend the working and applications of nuclear accelerators and detectors. 					
	Credits: 4 Core Compulsory / Elective					
	Max. Marks:	25+75	N	Iin. Passing Marks:		
	Total No. of	Lectures-Tutorials-Practice	al (in hours per wee	k): L-T-P: 4-0-0		
Unit	Unit Topics			No. of Lectures		
		PART				
		Introduction to Sol Crystal Stru				
I	Lattice, Basis & Crystal structure. Lattice translation vectors, Primitive & non-primitive cells. Symmetry operations, Point group & Space group. 2D & 3D Bravais lattice. Parameters of cubic lattices. Lattice planes and Miller indices. Simple crystal structures - HCP & FCC, Diamond, Cubic Zinc Sulphide, Sodium Chloride, Cesium Chloride and Glasses.				7	
II	Crystal Diffraction X-ray diffraction and Bragg's law. Experimental diffraction methods - Laue, Rotating crystal and Powder methods. Derivation of scattered wave amplitude. Reciprocal lattice, Reciprocal lattice vectors and relation between Direct & Reciprocal lattice. Diffraction conditions, Ewald's method and Brillouin zones. Reciprocal lattice to SC, BCC & FCC lattices. Atomic Form factor and Crystal Structure factor.			7		
Ш	Crystal Bindings Classification of Crystals on the Basis of Bonding - Ionic, Covalent, Metallic, van der Waals (Molecular) and Hydrogen bonded. Crystals of inert gases, Attractive interaction (van der Waals-London) & Repulsive interaction, Equilibrium lattice constant, Cohesive energy and Compressibility & Bulk modulus. Ionic crystals, Cohesive energy, Madelung energy and evaluation of Madelung constant.				7	

	Lattice Vibrations			
IV	Lattice Vibrations: Lattice vibrations for linear mono & di atomic chains, Dispersion relations and			
	Acoustical & Optical branches (qualitative treatment). Qualitative description of Phonons in solids.			
	Lattice heat capacity, Dulong-Petit's law and Einstein's theory of lattice heat capacity.			
	Free Electron Theory: Fermi energy, Density of states, Heat capacity of conduction electrons,	9		
	amagnetic susceptibility of conduction electrons and Hall effect in metals.			
	Band Theory: Origin of band theory, Qualitative idea of Bloch theorem, Kronig-Penney model,			
	Effectice mass of an electron & Concept of Holes & Classification of solids on the basis of band theory.			
	PART B			
	Introduction to Nuclear Physics			
	Nuclear Forces & Radioactive Decays			
	General Properties of Nucleus: Mass, binding energy, radii, density, angular momentum, magnetic			
	dipole moment vector and electric quadrupole moment tensor.			
V	Nuclear Forces: General characteristic of nuclear force and Deuteron ground state properties.	9		
	Radioactive Decays: Nuclear stability, basic ideas about beta minus decay, beta plus decay, alpha			
	amma decay & electron capture, fundamental laws of radioactive disintegration and			
	radioactive series.			
	Nuclear Models & Nuclear Reactions			
	Nuclear Models: Liquid drop model and Bethe-Weizsacker mass formula. Single particle shell			
VI	model (the level scheme in the context of reproduction of magic numbers included).	9		
	Nuclear Reactions: Bethe's notation, types of nuclear reaction, Conservation laws, Cross-section of			
	nuclear reaction, Theory of nuclear fission (qualitative), Nuclear reactors and Nuclear fusion.			
	Accelerators & Detectors			
	Accelerators: Theory, working and applications of Van de Graaff accelerator, Cyclotron and			
VII	rotron.			
	Detectors: Theory, working and applications of GM counter, Semiconductor detector, Scintillation			
	counter and Wilson cloud chamber.			
	Elementary Particles			
	Fundamental interactions & their mediating quanta. Concept of antiparticles. Classification of			
VIII	elementary particles based on intrinsic-spin, mass, interaction & lifetime. Families of Leptons,	6		
V 111	Iesons, Baryons & Baryon Resonances. Conservation laws for mass-energy, linear momentum			
	angular momentum, electric charge, baryonic charge, leptonic charge, isospin & strangeness.			
	Concept of Quark model.			
	Suggested Readings			

Suggested Readings

PART A

- 1. Charles Kittel, "Introduction to Solid State Physics", Wiley India Private Limited, 2012, 8e
- 2. A.J. Dekker, "Solid State Physics", Macmillan India Limited, 1993
- 3. R.K. Puri, V.K. Babbar, "Solid State Physics", S. Chand Publishing, 2015

PART B

- 1. Kenneth S. Krane, "Introductory Nuclear Physics", Wiley India Private Limited, 2008
- 2. Bernard L. Cohen, "Concepts of Nuclear Physics", McGraw Hill, 2017
- 3. S.N. Ghoshal, "Nuclear Physics", S. Chand Publishing, 2019

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester V, Theory Paper-2 (B010502T)

This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Progr	amme/Class: Degree	Year: Thi	rd	Semester: Sixth	
	,	Subject: P	hysics		
Cours	Course Code: B010602T Course Title: Analog & Digital Principles & Applications				
		Course Outco	mes (COs)		
1. S	Study the drift and diffusion of charge carriers in a semiconductor.				
2. U	Understand the Two-Port model of a transistor.				
3. S	Study the working, properties and uses of FETs.				
4. C	comprehend the design and of	operations of SCRs and UJ	Γs.		
5. U	Inderstand various number s	ystems and binary codes.			
	amiliarize with binary arithr				
7. S	tudy the working and proper	ties of various logic gates.			
8. C	comprehend the design of co	mbinational and sequential	circuits.		
	Credits:	4	Core	Compulsory / Elective	
	Max. Marks: 25+75 Min. Passing Marks:				
	Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0				
Unit	Topics			No. of	
Omt	Topics 1				Lectures
		<u>PART</u>	<u>`A</u>		
	,	Analog Electro			
		Semiconductor .			
	Expressions for Fermi energy, Electron density in conduction band, Hole density in valence band,				
	Drift of charge carriers (mobility & conductivity), Diffusion of charge carries and Life time of charge				
I	carries in a semiconductor. Work function in metals and semiconductors.				9
	Expressions for Barrier potential, Barrier width and Junction capacitance (diffusion & transition)				
	for depletion layer in a PN j	unction. Expressions for Cu	urrent (diode equation	on) and Dynamic resistance	
	for PN junction.				
	m 14 m 5 133	Transistor Mo	_		
	Transistor as Two-Port Net		-		
II	discussion of Z, Y & h parameters and their equivalent two-generator model circuits. h-parameters				1 X
	for CB, CE & CC configurations. Analysis of transistor amplifier using the hybrid equivalent model				l
	and estimation of Input Impedance, Output Impedance and Gain (current, voltage				
	& power).	E'-11 E@4 T			
	Field Effect Transistors			-	
	JFET: Construction (N channel & P channel); Configuration (CS, CD & CG); Operation in different regions (Ohmic or Linear, Saturated or Active or Pinch off & Break down); Important Terms (Shorted				
	Gate Drain Current, Pinch Off Voltage & Gate Source Cut-Off Voltage); Expression for Drain Current (Shockley equation); Characteristics (Drain & Transfer); Parameters (Drain Resistance)				
TTT	Current (Shockley equation); Characteristics (Drain & Transfer); Parameters (Drain Resistance,				
III	Mutual Conductance or Transconductance & Amplification Factor); Biasing w.r.t. CS configuration				
	(Self Bias & Voltage Divider Bias); Amplifiers (CS & CD or Source Follower); Comparison (N & P				
	channels and BJTs & JFETs). MOSEET: Construction and Working of DE MOSEET (N channel & R channel) and E MOSEET				_
	MOSFET: Construction and Working of DE-MOSFET (N channel & P channel) and E-MOSFET (N channel & P channel); Characteristics (Drain & Transfer) of DE-MOSFET and E-MOSFET;				
	Comparison of JFFET and MOSFET.				

	Other Devices				
IV	SCR: Construction; Equivalent Circuits (Two Diodes, Two Transistors & One Diode-One Transistor); Working (Off state & On state); Characteristics; Applications (Static switch, Phase control system & Battery charger). UJT: Construction; Equivalent Circuit; Working (Cutoff, Negative Resistance & Saturation regions); Characteristics (Peak & Valley points); Applications (Trigger circuits, Relaxation oscillators & Sawtooth generators).	5			
	PART B				
	Digital Electronics				
	Number System				
	Number Systems: Binary, Octal, Decimal & Hexadecimal number systems and their inter				
V	conversion.	6			
	Binary Codes: BCD, Excess-3 (XS3), Parity, Gray, ASCII & EBCDIC Codes and their advantages				
	& disadvantages. Data representation.				
	Binary Arithmetic				
VI	Binary Addition, Decimal Subtraction using 9's & 10's complement, Binary Subtraction using 1's	5			
	& 2's compliment, Multiplication and Division.				
	Logic Gates				
	Truth Table, Symbolic Representation and Properties of OR, AND, NOT, NOR, NAND, EX-OR &				
VII	EX-NOR Gates. Implementation of OR, AND & NOT gates (realization using diodes & transistor).	9			
	De Morgan's theorems. NOR & NAND gates as Universal Gates. Application of EX-OR & EX-				
	NOR gates as pairty checker. Boolean Algebra. Karnaugh Map.				
	Combinational & Sequential Circuits				
	Combinational Circuits: Half Adder, Full Adder, Parallel Adder, Half Substractor, Full Substractor.	10			
VIII	Data Processing Circuits: Multiplexer, Demultiplexer, Decoders & Encoders.				
	Sequential Circuits: SR, JK & D Flip-Flops, Shift Register (transfer operation of Flip-Flops), and				
	Asynchronous & Synchronous counters.				
	a				

Suggested Readings

PART A

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e

PART B

- 1. D. Leach, A. Malvino, Goutam Saha, "Digital Principles and Applications", McGraw Hill, 2010, 7e
- William H. Gothmann, "Digital Electronics: An Introduction to Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e
- 3. R.P. Jain, "Modern Digital Electronics", McGraw Hill, 2009, 4e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. Swayam Prabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8

Course Prerequisites

Passed Semester IV, Theory Paper-1 (B010401T)

This course can be opted as an Elective by the students of following subjects

Open to all

Suggested Continuous Internal Evaluation (CIE) Methods

20 marks for Test / Quiz / Assignment / Seminar

05 marks for Class Interaction

Suggested Equivalent Online Courses

- 1. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
- 3. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 4. edX, https://www.edx.org/course/subject/physics
- 5. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/

- Other Digital Platforms / Web Links and Equivalent Online Courses may be suggested / added to the respective lists by individual Universities.
- In End-Semester University Examinations, equal weightage should be given to Part A (units I to IV) and Part B (units V to VIII) while framing the questions.

Programme/Class: Degree		Year: Thi	Year: Third Semeste		n
		Subject: P	Physics		
Cours	Course Code: B010603P Course Title: Analog & Digital Circuits				
		Course Outco	mes (COs)		
to stu	og & digital circuits have the dy and determine the electriments. Online Virtual Laling.	tronic properties. Measurer b Experiments give an ins	ment precision and sight in simulation	perfection is achieved th	rough La
	Max. Marks:				
		Lectures-Tutorials-Practic		Min. Passing Marks:	
Unit				No. of Lectures	
	Lab Experiment List				
	 Energy band gap of the street o	FET, MOSFET, SCR, UJT Amplifier VCA tion of AND gate using TT tion of OR gate using TTL tion of NAND gate and use tion of NOR gate and use a tion of NOT gate using TT tion of Ex-OR gate using T	TL IC 7408 IC 7432 e as Universal gate us IS Universal gate us L IC 7404 TL IC 7486	using TTL IC 7400	60
Online Virtual Lab Experiment List / Link Virtual Labs an initiative of MHRD Govt. of India http://vlabs.iitkgp.ac.in/ssd/#					
	2. Silicon Controlled	tics of Junction Field Effect Rectifier (SCR) characterististor (UJT) and relaxation of	stics		

Virtual Labs an initiative of MHRD Govt. of India

https://de-iitr.vlabs.ac.in/List%20of%20experiments.html

- 4. Verification and interpretation of truth table for AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates
- Construction of half and full adder using XOR and NAND gates and verification of its operation
- 6. To study and verify half and full subtractor
- 7. Realization of logic functions with the help of Universal Gates (NAND, NOR)
- 8. Construction of a NOR gate latch and verification of its operation
- 9. Verify the truth table of RS, JK, T and D Flip Flops using NAND and NOR gates
- 10. Design and Verify the 4-Bit Serial In Parallel Out Shift Registers
- 11. Implementation and verification of decoder or demultiplexer and encoder using logic gates
- 12. Implementation of 4x1 multiplexer and 1x4 demultiplexer using logic gates
- 13. Design and verify the 4-Bit Synchronous or Asynchronous Counter using JK Flip Flop
- 14. Verify Binary to Gray and Gray to Binary conversion using NAND gates only
- 15. Verify the truth table of 1-Bit and 2-Bit comparator using logic gates

Suggested Readings

- 1. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e
- 2. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e
- 3. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e
- 4. J.D. Ryder, "Electronic Fundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e
- 5. S.L. Gupta, V. Kumar, "Hand Book of Electronics", Pragati Prakashan, Meerut, 2016, 43e
- 6. D. Leach, A. Malvino, Goutam Saha, "Digital Principles and Applications", McGraw Hill, 2010, 7e
- William H. Gothmann, "Digital Electronics: An Introduction to Theory and Practice", Prentice-Hall of India Private Limited, 1982, 2e
- 8. R.P. Jain, "Modern Digital Electronics", McGraw Hill, 2009, 4e

Books published in Hindi & Other Reference / Text Books may be suggested / added to this list by individual Universities.

Suggestive Digital Platforms / Web Links

- 1. Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/ssd/#
- 2. Virtual Labs an initiative of MHRD Govt. of India, https://de-iitr.vlabs.ac.in/List%20of%20experiments.html
- 3. Digital Platforms / Web Links of other virtual labs may be suggested / added to this lists by individual Universities.

Course Prerequisites

Opted / Passed Semester VI, Theory Paper-2 (B010602T)

This course can be opted as an Elective by the students of following subjects

Chemistry / Computer Science / Mathematics / Statistics

Suggested Continuous Internal Evaluation (CIE) Methods

15 marks for Record File (depending upon the no. of experiments performed out of the total assigned experiments)
05 marks for Viva Voce

05 marks for Class Interaction

Suggested Equivalent Online Courses

- The institution may add / modify / change the experiments of the same standard in the subject.
- The institution may suggest a minimum number of experiments (say 6) to be performed by each student per semester from the Lab Experiment List.
- The institution may suggest a minimum number of experiments (say 3) to be performed by each student per semester from the Online Virtual Lab Experiment List / Link.